US009218221B2

a2 United States Patent

Xiao et al.

US 9,218,221 B2
Dec. 22, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

TOKEN SHARING MECHANISMS FOR

BURST-MODE OPERATIONS

Applicant: Amazon Technologies, Inc., Reno, NV
(US)

Inventors: Wei Xiao, Kirkland, WA (US); Miguel
Mascarenhas Filipe, Seattle, WA (US);
James R. Hamilton, Seattle, WA (US);
Yijun Lu, Kenmore, WA (US); Stefano
Stefani, [ssaquah, WA (US); Stuart
Henry Seelye Marshall, Seattle, WA
(US); Bjorn Patrick Swift, Seattle, WA
(US); Kiran-Kumar
Muniswamy-Reddy, Seattle, WA (US)

Assignee: Amazon Technologies, Inc., Reno, NV
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 228 days.

Appl. No.: 13/926,708

Filed: Jun. 25,2013

Prior Publication Data

US 2014/0380330 A1 Dec. 25, 2014

Int. CL.

GO6F 9/46 (2006.01)

GO6F 9/50 (2006.01)

U.S. CL

CPC GO6F 9/5083 (2013.01); GOGF 9/5016

(2013.01); GOGF 2209/503 (2013.01); GO6F
2209/5013 (2013.01)
Field of Classification Search
CPC GOGF 9/4881; GOGF 9/5016
See application file for complete search history.

Tokens 208

Tokens instantiated
during bucket

initialization

(56) References Cited
U.S. PATENT DOCUMENTS
7,130,917 B2 10/2006 Zhang et al.
7,228,354 B2 6/2007 Chambliss et al.
7,328,274 B2 2/2008 Zhang et al.
8,250,197 B2 8/2012 Gulati et al.
2004/0111308 Al 6/2004 Yakov
2006/0167703 Al 7/2006 Yakov
2006/0288184 Al 12/2006 Riska et al.
2007/0112723 Al 5/2007 Alvarez et al.
2007/0297328 Al 12/2007 Semret et al.
2008/0084824 Al* 4/2008 Chinetal. 370/235.1
2008/0189700 Al 8/2008 Schmidt et al.
2009/0254383 Al 10/2009 Semret et al.
2010/0076805 Al 3/2010 Batsakis et al.
(Continued)
FOREIGN PATENT DOCUMENTS
EP 2031807 3/2009
OTHER PUBLICATIONS

U.S. Appl. No. 13/327,616, filed Dec. 15, 2012, Wei Xiao, et al.
(Continued)

Primary Examiner — Camquy Truong
(74) Attorney, Agent, or Firm — Robert C. Kowert;
Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

(57) ABSTRACT

Methods and apparatus for token-sharing mechanisms for
burst-mode operations are disclosed. A first and a second
token bucket are respectively configured for admission con-
trol at a first and a second work target. A number of tokens to
be transferred between the first bucket and the second bucket,
as well as the direction of the transfer, are determined, for
example based on messages exchanged between the work
targets. The token transfer is initiated, and admission control
decisions at the work targets are made based on the token
population resulting from the transfer.

20 Claims, 33 Drawing Sheets

2048

Tokens added over
time based on refil
rate

Buckst 202

N tokens consumed
for each accepted
work request

210

work
request
Jrivey

work
request
1700

work
request
1702

Incoming work

Admission
controller 180

v

work
request
1704

Accepted work

requests (e.g., reads/
writes)

X

requests

" Rejected work
r:t;zas! requests (.g., due to
178 insufficient tokens)

US 9,218,221 B2

Page 2
(56) References Cited U.S. Appl. No. 13/799,386, filed Mar. 13, 2013 , Swaminathan
Sivasubramanian et al.
U.S. PATENT DOCUMENTS U.S. Appl. No. 13/247,846, filed Sep. 28, 2011, Brian Helfrich et al.
U.S. Appl. No. 13/431,360 , filed Mar. 27,2012, David John Ward Jr.
2010/0195504 Al* 8/2010 Nar_ldagopal etal. ... 370/235.1 U.S. Appl. No. 13/475,359, filed May 18, 2012, David John Ward Jr.
2010/0228819 Al* 9/2010 Wel oo 709/203 U.S. Appl. No. 13/926,686, filed Jun. 25, 2013, Wei Xiao, et al.
2011/0138051 Al 6/2011 Dawson etal. U.S. Appl. No. 13/926,694, filed Jun. 25, 2013, Stuart Henry Seelye
2011/0320631 Al 12/2011 Flnke_lsteln Marshall et al.
2012/0054329 Al 3/2012 Gulati et al. U.S. Appl. No. 13/926,684, filed Jun. 25, 2013, Wei Xiao, et al.
2012/0131591 Al 5/2012 Moorthi et al. A
5012/0311576 AL 12/2012 Shu et al U.S. Appl. No. 13/926,697, filed Jun. 25, 2013, Wei Xiao, et al.
2012/0330954 Al 12/2012 Sivasubramanian et al. U.S. Appl. No. 14/701,464, filed Apr. 30, 2015, Tarang Gupta.
U.S. Appl. No. 14/701,462, filed Apr. 30, 2015 Jacob David Luszcz,
OTHER PUBLICATIONS etal.

U.S. Appl. No. 13/327,620, filed Dec. 15, 2012, Wei Xiao, et al. * cited by examiner

U.S. Patent Dec. 22, 2015 Sheet 1 of 33 US 9,218,221 B2

Burst B1 Burst B2

A . >|<—>|<—>|<—>|<—>
Normal period N1 Normal Normal

Provisioned
capacity 112 \
pr|
Work request

arrival rate 110

>
Time
FIG. 1a
System 100
Work target 102
(e.g., DB table
partition)
Accepted work
requests’
operations 179
Work requests
170
> Admission controller 180
Rejected work
/ \ requests 189
Normal-mode token Burst-mode token
bucket set 120 bucket set 125

FIG. 1b

U.S. Patent Dec. 22, 2015 Sheet 2 of 33 US 9,218,221 B2

204A 204B
Tokens instantiated Tokens added over
during bucket time based on refill
initialization rate
))

 / Bucket 202

8000
>
000000

N tokens consumed
for each accepted

Tokens 208

work request
210
work work work o \/ work
— request H request H request > | Admission | — 1 request f————»
170E 170D 170C controller 180 170A
Incoming work Accepted work
requests

requests (e.g., reads/

writes) > X l

- Rejected work
wor requests (e.g., due to

request | jngufficient tokens)
170B

FIG. 2

U.S. Patent Dec. 22, 2015 Sheet 3 of 33 US 9,218,221 B2

Bucket configuration properties 302

Initial token population 306

Token consumption policy 310 (may include
pre-admission, post-admission policies, and/or
staleness policies)

Token refill policy 314

Maximum population 31

Minimum population 322 (may be negative)

Token deficit policy 324

Applicable operation types 326

Pricing policies 32

FIG. 3

US 9,218,221 B2

Sheet 4 of 33

Dec. 22, 2015

U.S. Patent

PEOPIIOM
uo paseq ajel
18 8poul JSINq Ul pue
9POLW [eWIOU Y10
Ul PSWNSUOD SUSY0|

*i4

(1d a1e1 pauoisinoid
10 uonounj e “6-a)

Y TRIITEY
JE PaI[jal SuoL

(N =< g uonejndod
Xew) 7z 199onq apow-jsing

Gl 18s 190nq

U0} apow-jsing

v "Old

ey
190Nq 8POW-ISINg
Ul pajenwNooe
0ct 19%0Nnq
LUOJJ SUBYO0) pasnun

PEOPIIOM UO paseq
8]l Je 8poW [BLIOU
Ul PSLNSUO0D SUBY0 |

Jd ajel pauoisinoid
Je Pa||lja susqoL

144174 7Th

(N uoneindod xew) Ozy
19%0Nnq Aj10eded PBUOISIACIH

0¢1 19s 193ong
U0} SPOW-[BWION

U.S. Patent Dec. 22, 2015 Sheet 5 of 33 US 9,218,221 B2

Normal-mode token Burst-mode token
bucket set 120 bucket set 125

/ /

Read provisioned-capacity
bucket 502 Read burst bucket 506

Write provisioned-capacity

bucket 504 Write burst bucket 508

FIG. 5

Burst-mode token
bucket set 125

Local-burst-limit bucket(s) 604

Shared-resource capacity
bucket(s) 606

Replication-management
bucket(s) 608

FIG. 6

US 9,218,221 B2

Sheet 6 of 33

Dec. 22, 2015

U.S. Patent

Z Old

awiL

oL

2¢0.
yead ajel 1sing

|-opm-g ising

g¢0.
yead ajel jsing

L

|-MOJJBU-g 1sINg

~—

vco.
yead

jel 1sing

........... | AN

id

711 Aoeded
PBUCISIAOI]

011 Slel eAlle
1senbai YIopn

US 9,218,221 B2

Sheet 7 of 33

Dec. 22, 2015

U.S. Patent

8 Old

L LIl S I ittt L L L L LI LR L L L L LR L LR L L L LAl L b L LE L L L LI L LT

-
—— —

.

‘
H \ Rt /; 7//\ H
m \ K //v\mo_v_ho; UO pPaseq 8.l 1B S18Y9Ng Yjoq Wol) paunsuco ale suayo| \ AN \ ’
[] s \ // / . \f \ A N, A N, “
[] =\ \, N N,
: % 9% :
' A ‘
[] []
[] []
[] []
S '
' (N} + (1d)e) = aned lyoy :
s SlerIsing {(mgs , 1gs) = uonejndod-xe|\)) F0F 18%9Nq 1SING-PaUIRISNS H
4 -pouleIsng :
' (()zy + '
: (1)1} = epe ey '
’ ‘(mqd , 1qd) :
H - > = uoneindod-xepy) '
H MJS MOPUIM 708 1 !
[]]
-18INg-pauE)sn .
m 18Ing-paulelsng 19%0NQ 18INg-Yesd SIEISINg ey m
: :
: :
“ "
[] []
: — < > :
! 108 wad !
' 19494 punoduwo) q :
! MOPUIM-ISING-YBad '
' K
190nq Aloedeo-pauoisiacid Ul SUSY0) pasnun Jo Jaguinu :n
. gjel pauoisiaoad ;ud
GCl s suonouny ')z
199Ng spow-jsing x5y

U.S. Patent Dec. 22, 2015 Sheet 8 of 33 US 9,218,221 B2

Burst-mode token
bucket set 125

Local-burst-limit buckets 604

Category C1 compound bucket 801A
PBB 802

¥

SBB 804A

. Category C2 compound bucket 801B

PBB 802B
-~

SBB 8048

__ Category C3/C4 compound bucket 801

PBB 802C PBB 802D
(for C3 work requests) (for C4 work requests)
- T~a

SBB 804C (for C3 or C4 work
requests)

Shared-resource capacity bucket(s) 606

Replication-management bucket(s) 608

FIG. 9

U.S. Patent Dec. 22, 2015 Sheet 9 of 33 US 9,218,221 B2

Determine normal-mode throughput capacity limit of work target (e.g., based on
provisioning request from client) 1001

A 4
Instantiate and populate normal-mode token bucket(s), burst-mode token
bucket(s) 1006

'

Receive next work request at admission controller 1010

:

ormal-mode token bucket population

No meets threshold T1? 1014

Consume token(s) of normal-mode bucket(s) (e.g., based on estimated work
amount and normal-mode consumption policy) and burst-mode buckets, and |—
accept work request for execution; optionally, refill bucket(s) 1016

Burst-mode token bucket population
meets threshold T2? 1018

No

Consume token(s) of burst-mode bucket(s) (e.g., based on estimated work
amount and burst-mode consumption policy) and accept work request for
execution; optionally, refill bucket(s) 1020

Initiate work corresponding to request 1022

v
Asynchronously, when work completes, adjust token counts of normal-mode and/
or burst-mode bucket(s) if original work estimate was incorrect 1024

> Reject/delay/retry work request; optionally, refill bucket(s) 1080

FIG. 10

U.S. Patent Dec. 22, 2015 Sheet 10 of 33 US 9,218,221 B2

Determine (e.g., via configuration parameters), for a given work target, peak burst
rate pbr, peak burst time window pbw, sustained burst rate sbr, sustained burst
time window sbw 1101

'

Instantiate and populate peak-burst (PB) token bucket(s) and sustained-burst
(SB) token bucket(s) of compound token bucket(s); set maximum population(s) of
PB bucket(s) to pbr*pbw, maximum population(s) of SB bucket(s) to sbr*spw; set
refill rates as functions of provisioned rate and/or rate of accumulation of unused

tokens in provisioned capacity bucket(s) 1106

'

Receive next work request at admission controller during burst mode

1110 [

bucket(s) and/or SB bucket(s) have
sufficient tokens? 1114

Additional burst-mode buckets
(e.g., shared-resource buckets, replication management buckets), if any,
have sufficient tokens? 1118

Consume token(s) of burst-mode bucket(s) (e.g., based on consumption policies,
estimated work amount) and accept work request for execution 1120

> Reject, delay or retry work request 1138

'

Optionally, refill buckets based on refill rates, subject to maximum population
limits 1140

FIG. 11

U.S. Patent Dec. 22, 2015 Sheet 11 of 33 US 9,218,221 B2

Determine (e.g., via configuration parameters), types of triggering events (such
as interval expiration, new work request arrivals) that can potentially lead to token
population changes (e.g., consumption/refills/transfer) 1201

!

Detect occurrence of next triggering event 1206 -«

l

Optionally, start atomic operation that includes reads/writes to token buckets;
determine token populations of bucket(s) — e.g., provisioned-capacity normal-
mode bucket, one or more burst-mode buckets 1210

Consume/discard tokens? 1214

No

Determine number of tokens to be removed from respective bucket(s), set token
populations accordingly 1217

“Transfer” unused tokens? 1220 o

Reduce token population in source bucket(s), add tokens to destination bucket(s)
1223

Add tokens to bucket(s) if needed, based on respective refill policies 1227
If atomic operation was started, end atomic operation 1230

FIG. 12

U.S. Patent Dec. 22, 2015 Sheet 12 of 33 US 9,218,221 B2

Receive next indication of completion of operations corresponding to work
request 1301

Actual amount of work exceeds
estimate used for admission? 1304

Determine number of tokens to be deducted from one or more bucket(s), set
token populations accordingly (this could lead to negative populations) 1308

Actual amount of work was less than

No estimate used for admission? 1312

Optionally, determine number of tokens to be added to one or more bucket(s), set
token populations accordingly 1316

»l

Update records on work effort estimation errors, e.g., to help improve accuracy of [
future estimations 1323

FIG. 13

U.S. Patent Dec. 22, 2015 Sheet 13 of 33 US 9,218,221 B2

Receive indication of background/administrative event (e.g., recovery operation)
that may reduce throughput capacity at work target 1401

Disable bursting temporarily? 1404

Until event completes, support only normal-mode admissions 1408
Determine number of tokens to be removed/deducted from one or more burst-

mode buckets (e.g., peak-burst bucket(s)), set token populations accordingly;
adjust refill rates 1412

'

Wait for completion of background/administrative event 141 -
Optionally, adjust token populations of burst-mode buckets upwards, re-adjust

refill rates to original settings, resume burst-mode admission control with original
parameters 1418

FIG. 14

U.S. Patent Dec. 22, 2015 Sheet 14 of 33 US 9,218,221 B2

Monitor burst-mode work request arrival rates, acceptance rate and rejection
rates over some time period 1501

Analysis suggests burst-mode admission
control parameters should be changed? 1504

Estimate costs of implementing parameter changes 1508
Inform clients regarding costs/benefits of changes 151
Receive client request for burst-mode parameter changes, acknowledging cost
change to client 1512

v

Modify burst-mode parameters 151

FIG. 15

US 9,218,221 B2

Sheet 15 of 33

Dec. 22, 2015

U.S. Patent

', .
AL L R DL LRI R R LEI LSRRI L X L)

[4

9/ Old

swiL
0L

700z dnoub Buleys usyo|

g070¢ 109lqo Bleq

€dd

S
.
»,
S
N,

1)
s,
.,

.

awl

L

0L

3

0¢

ﬂ'""""'-""'"'---"'--"-~

14 y

Pt PN 4

L4

"‘
2 9jel uopoalel
158nbal JIOM

.
.
L)

-¢0d

.. ¢G0C

.y
.
1y
.y

swiL
L oL

-+

L SJEl [BALIE o V

15anbau YI0AA

- 10d

boscscsaa,

Y0T0¢ 1elgo ejeq

U.S. Patent

Time

Dec. 22, 2015 Sheet 16 of 33 US 9,218,221 B2
Peer A Peer B Peer C
Initial
1000 1000 1000 1\\ oopulation of
. token-sharing
i 2150 bucket
\d
\
50 1000 1000
Token-sharing
Transfer size ts1 = (1000-50)/2 = 475 protocol
* iteration #1
50 + ts1 = 525 1000 1000 ~ts1 =
525
>
Transfer size ts2 = (1000-525)/2 ~= 237 ™
* | Token-sharing
1000- protocol
525+ts2=~763 (52762 925 iteration #2
o
Transfer size ts3 = (763-525)/2 = 119 D
* Token-sharing
protocol
763 -ts3=644 762 525+ts3=644 iteration #3
o
Transfer size ts4 = (762-644)/2 = 59 D
* Token-sharing
protocol
644 762-ts4=703 644+ts4=703 iteration #4
o
Transfer size ts5 = (703-644)/2 =~ 29 ~
* Token-sharing
protocol
644+ts5=~674 703-ts4=~673 703 iteration #5
o

FIG. 17

US 9,218,221 B2

Sheet 17 of 33

Dec. 22, 2015

U.S. Patent

Veree dnoib sead Buueys uayo|

gL 'Old
~ N h
g01cg apou abeioig (seoidas aneys) YOTZZ spou aBelolS
acvee dnosbused Buneysuayo]l (C —) e
" Ao) g¢0¢¢ s
J¢0¢¢ L Ai44

30Inap aBRIO)g soisp sbeioig 30IAap abelIo)g
m.--...---........--.........--........---.---........---........--.........--........---.....n.n-n-.m
“ [| n “

S— G212 195 19yoNq 9Ae _ e _

J0lc¢ gamw 19%0Nq 9ABIS d¢/¢c¢ 198 18onq IS 2S-1d-€0 m

18S 18%9Nq BAB|S “ 2S2d¥0 _ H

: 1S kd+O0 '
] []
[]

Erai4 \ 1S-1d¢O m

195 J9¥ONq AE|S AZI2Z 195 19YONG SABIS _ 1S-ld-10 _ V2122 188 189nq 8Ae|S :

; 1S-¢d-¢O '
[

L Y 4
t m
']
] »
' S W-1d-¢0 W-1d-1O |
4342 510 e | { e | .

| Jos ovonq sovsen [wesio] GEGTL 125 1940nq JaISEN L~ VZGzZ 198 19%0Nq Jaisep :
Qininiiaiinininiieiek Sunisiiiiiinininiiiiiiii i il G
\ | udv0 |+ + «| 2dv0 | 1dv0 | | zd€o | 1d€o | [2dz0 | 1420 | [¢d10 |zd-10 | 110 |

seaidey Js)sEW - _— —
iseoldo, 10 oz D117 gz ™~ 507 pelgo eeg

US 9,218,221 B2

Sheet 18 of 33

Dec. 22, 2015

U.S. Patent

6L Ol

(suoniued |$9 pue suoniied 9|qe) eseq)
71z dnoub 1aad Buleys usyo|

Vv

[]

[]

[]

[]

:

' £.00dIS . CEodsy <lodisTr lodisT

1

e / A

' 0cee — - A B - B

bonsap) xepui A1epuooss g0l 10 aGe | odlso | | cduso | zawuso | 1dwuso |

L} —
w |88N_m_ J0EEL q0EET _m_ VOEEC 124nq anaoss aiepdn
[]

;)

; 05¢z uonebedoud sjepdn m

[}

[]

: NGZEe G2ET [S[1474 _m_ VGZEL 134nq pu3s &1Epdn
[}

L}

; OIEZ slqeroseg —»-

: Nd-Lg s ¢d-14 2d-19 119

m \ A A
A N N
. <NOdLE g0dlglr <z0dlg <10d1g
[}

[]

Veccccscssscsscscnssscsssssnsscssssssessesssssssnnn?

U.S. Patent Dec. 22, 2015 Sheet 19 of 33 US 9,218,221 B2

Token-sharing request (TSReq) 2410
Token-sharing »1 Token-sharing
initiator peer partner peer
(TSIP) 2402 | (TSPP) 2405
Token-sharing acceptance (TSAcc) 2420
FIG. 20a
TSReq 2410
L
TSIP 2402 TSPP 2405

Token-sharing rejection (TSRej) 2430

FIG. 20b
TSReq 2410A
-
TSReq 24108
TSIP2402 | SReq 24108 TSPP 2405
-
TSAcc 2420
FIG. 20c
TSReq 2410A
TSReq 2410B
TSIP2402 | SReq 24108 TSPP 2405
TSRe] 2430

FIG. 20d

U.S. Patent Dec. 22, 2015 Sheet 20 of 33 US 9,218,221 B2

Configure token buckets (e.g., including normal-mode and burst-mode buckets)
for admission control at each work target of a token sharing group 2501

'

At a given work target W1, receive work requests, implement admission control

—»| and perform work operations for accepted requests until start of next token

sharing iteration is triggered (e.g., based on criteria such as elapsed time, token
count threshold, or rejection rate threshold) 2504

l

Identify next token-sharing partner peer W2 (e.g., using gossip protocol and/or
other random selection technique) 2507

'

Compare token populations of sharing-enabled buckets of W1 and W2 2510

Token transfer criteria met? 2514

Transfer TS (transfer size) tokens from one of the work targets to the other, e.g.,
’7 from the work target with higher token population among W1 and W2 to the work

target with lower population 2518
>

Contact more peers? 2522

No

— Token sharing iteration complete 2526

FIG. 21

US 9,218,221 B2

Sheet 21 of 33

Dec. 22, 2015

U.S. Patent

oL
ml 0L

T |
»,

¥50¢E

¥50

V100¢

soccccnna,

AS
.,
by

¥3d

.
N
.
s
ld
.
S,
)
N

0Z0¢ dnoJb Buueys sainossy

‘eesessecsssssssescscscsccccnsacccs

¢¢ Ol

owiL
Al

€0d

awiL
ml 0L

.‘_
! -
L] 4] [
- Ll d
- P -

A
2y ejel uonoalal
1senbaJ YO

-¢0d

LM €181 [BALLIE
1senbas YoM\

10d

) |
0-
arooe 31008 arooe ‘
19618) YIopN 19618) oA 196.18) YIOM 19618) oM '
/ m
A ———— R —— Prpp———, prpap—— - "'llll"‘h
od TR NG\ Nwd i/ 0d s

020€ 1L4S 1wy ndyBnoiy) aoinosal paseys .~

TF0E 204n0sal

poleys

U.S. Patent Dec. 22, 2015 Sheet 22 of 33 US 9,218,221 B2
4 “
———————— Shared data structures 3115
_______ — (e.g., OS buffers, sockets,
“TPCT inodes, or application
"""""" 1 o1-pi objects)
“USRTL3120B)
::"562""::»\
""""" ~ 02-P
02P3 Shared volatile
memory 3116
CTPC3 T SRTLa120C
""""" ~H o3pr2
L. Shared processing
elements 3118
(e.g., cores, CPUs)

Shared storage device

.
........
...........
. ~
o
‘Q

~~~~~
______
-------------

N2 e
7" SRTL3120E
_____________________ <
Shared network
device 3122 (e.g.,
Storage node 3110 NIC)
S
¢ SRTL3120F /
--------------------- "\
Shared network |  cceeeemmememeeenl
links 3132 " SRTL3120G

Shared external resource
3136 (e.g., configuration
database)

FIG. 23



US 9,218,221 B2

Sheet 23 of 33

Dec. 22, 2015

U.S. Patent

ve Old
((L)Ayoedes
pauoisiAoid
‘(L )eredeAle)g) =
U mopuim Joj ¥ 19611
YIOM JOJ ZZE YSuay0)
$599%8 PAINGUISI(] ((w1)semoeded
pauoisinoid
(41)11YS aApoaya)z)
STO0E 10} OFZC Su8Y0) §580X]
106.8) oM 1 LY\
J¢ree 130
. €0d »
gevee 13 bl
dhct sz = 117L49) s._,..,.
1a61e) YoM 0808 Joinquisip uayo| | «——— ¢ — -
UL JomaLsp xRl .. DEZE TS oA08y3

<

(.20 .2

hal Pvinfrr s

VI0ce
1061e) YoM

e

. 10d 2

Yevee 13a

N

Lo
“u,

...x (peseq mopuim swn) 0vze ™
\SoUJawW Bjel [eALLIE 1s0nbal v__o>>

e it
ea. -
Seeeaaa commm=o®

L1¢E
(s)ojuow sel [eALY

$80IN0Sal paleys Jo
0zz¢ suwi indyBnoay |

. NOCCE 1S

g 8022t L 3

-~



U.S. Patent Dec. 22, 2015 Sheet 24 of 33 US 9,218,221 B2

Configure set of work targets to utilize shared resource(s) to perform operations
of accepted work requests; each shared resource has a throughput limit 3301

l

Configure token buckets for admission control of work requests at work targets,
e.g., with bucket parameters based on work target’s provisioned capacity 3304

l

Monitor metrics (e.g., work request arrival rates, rejection rates, changes in
provisioned capacity or throughput limits) for next time window t 3307

'

Determine combined excess token count DET-total to be distributed among work
targets for time window t;+1, €.g., as a function of shared resource throughput
limits and provisioned capacities of work targets 3310

DET-total > 07 3313

Determine number of excess tokens DET-k to be granted to each work target for
time window t+1, e.g., as a function of metrics based on the work request arrival
rates and/or the provisioned capacities of the work targets 3316

'

Add DET-k tokens to respective bucket(s) (e.g., burst-mode buckets) at work
targets for time window ti1 3319

FIG. 25



US 9,218,221 B2

Sheet 25 of 33

Dec. 22, 2015

U.S. Patent

gac00¥
sapijod Buioud apow-1sing

9¢ oI

30 8seqelep buud

GO Jojesaudb ||

COF Susuodwod Buusialy

0Fv0F Jobeuew aoridianiep

Beuew soeudu|

807 Jobeuew Bupud

9] J3]|0JJUCD UOISSILLUPY

Zar (Shavong apow-jsing

GZ1 19s 19yonq
U0} 8powW-1sing

YG00y

saijod Budud apow-jeLioN

\

0cv
(shexong Aivedes paucisinoid

0l 18s 19onq
USYO} SPOU-[PUION




U.S. Patent Dec. 22, 2015 Sheet 26 of 33 US 9,218,221 B2

Pricing policy 4005

Applicability criteria 4106 (e.g.,
based on other bucket
population range, client budget
limits, time windows)

Static pricing component(s)
4108

Dynamic pricing component(s)
4111

Inter-client payment transfer
policy 4117

Best-effort constraints 412

Discount policies 4124

FIG. 27



U.S. Patent Dec. 22, 2015 Sheet 27 of 33 US 9,218,221 B2

Instantiate token buckets for workload management during various modes of
operation at work target 4201

l

Determine pricing policies (e.g., based on input from clients) for one or more
types of operations involving token bucket population changes, such as
consumption of tokens during burst mode, or transfer of tokens to support higher
burst mode workloads. 4204

'

Generate and accumulate records of token population changes in bucket(s)
associated with pricing policy ~ 4208

'

Generate billing amounts for clients based on records 212

FIG. 28



U.S. Patent Dec. 22, 2015 Sheet 28 of 33 US 9,218,221 B2

—= Receive next work request directed to work target 4301 .

Work target in burst mode? 4304

No

Use normal-mode pricing policy (e.g., fixed price for provisioned capacity) to
determine pricing for work request 4308

ared-resource capacity burst-modé
bucket has sufficient tokens? 4312

No

Local-burst-limit burst-mode

" bucket has sufficient tokens? 4316
0

Accept request, consume tokens from both shared-resource capacity and local-
burst-limit buckets; use a first burst-mode pricing policy to determine pricing for |—
work request 4320

'

Accept request, consume tokens from shared-resource capacity; use a second
burst-mode pricing policy to determine pricing for work request 4324

Reject/retry/delay request 432 -

FIG. 29



U.S. Patent Dec. 22, 2015 Sheet 29 of 33 US 9,218,221 B2

Implement programmatic interface(s), e.g., web pages or APls, to enable clients
to select pricing policy from among supported policy types for burst-mode
operations and/or normal-mode operations, or to provide parameters for policies
4401

'

Provide indication of supported policies and/or policy templates applicable to
client 4404

'

Receive pricing policy request from client 440

'

Initiate implementation of selected pricing policy and/or pricing parameters on
behalf of client 4412

FIG. 30



U.S. Patent Dec. 22, 2015 Sheet 30 of 33 US 9,218,221 B2

Implement programmatic interface(s), e.g., web pages or APlIs, for token
marketplace, to enable clients to sell, bid on, and/or purchase tokens for burst-
mode and/or normal-mode operations 4501

l

Receive indications of token transaction offers from clients, publicise/advertise
offers to other clients 4504

l

Receive indications of transaction completion (e.g., successful bid for tokens, or
fixed-price sale of token) 4508

l

Change token populations of affected token bucket(s) in accordance with
transaction 4512

l

Generate billing amounts based on transactions (e.g., amounts that may include
transfer payments to one or more clients, transaction fees to service) 4516

FIG. 31



U.S. Patent Dec. 22, 2015 Sheet 31 of 33 US 9,218,221 B2

Configure work target (e.g., database table or storage volume) as plurality of
partitions, each with respective set of normal-mode and/or burst-mode token
buckets for admission control 4601

'

Determine pricing policy for transferring tokens between partitions, e.g., in
response to detected non-uniformity in workloads between partitions 4604

'

Detect next triggering event to check whether inter-partition token transfer should

be attempted 4608
oken population at some partition p No
< threshold T1? 4612 A
, No
Token population at another

partition q > threshold T27 4616

Transfer token(s) from partition q to partition p and record transfer details 4620

'

Generate billing amounts for inter-partition token transfers 4624

FIG. 32



U.S. Patent Dec. 22, 2015 Sheet 32 of 33 US 9,218,221 B2

Configure initial policies and parameters, e.g., including refill rates and maximum
token populations, for normal-mode and/or burst-mode buckets used for
admission control at work target 4701

l

Determine pricing policy for modifying parameters, and notify clients regarding
pricing policy 4704

'

Receive request for modifying parameters, e.g., request to temporarily increase
refill rate or maximum population during a time window 4708

l

Change parameters in accordance with request 4712

l

Generate billing amounts based on parameter changes and pricing policy 4716

FIG. 33



U.S. Patent Dec. 22, 2015 Sheet 33 of 33 US 9,218,221 B2
Computing device
8000
Processor Processor Processor
8010a 8010b 8010n

:

:

;

/0 interface 8030

:

System memory 8020

I

Code
8025

Data
8026

Network interface
8040

!

Other device(s)
8060

FIG. 34



US 9,218,221 B2

1
TOKEN SHARING MECHANISMS FOR
BURST-MODE OPERATIONS

BACKGROUND

Several leading technology organizations are investing in
building technologies that sell “software-as-a-service”. Such
services provide access to shared storage (e.g., database sys-
tems) and/or computing resources to clients or subscribers.
Within multi-tier e-commerce systems, combinations of dif-
ferent types of resources may be allocated to subscribers
and/or their applications, such as whole physical or virtual
machines, CPUs, memory, network bandwidth, or I/O capac-
ity.

Every system that provides services to clients needs to
protect itself from a crushing load of service requests that
could potentially overload the system. In general, for a Web
service or remote procedure call (RPC) service, a system is
considered to be in an “overloaded” state if it is not able to
provide the expected quality of service for some portion of
client requests it receives. Common solutions applied by
overloaded systems include denying service to clients or
throttling a certain number of incoming requests until the
systems get out of an overloaded state.

Some current systems avoid an overload scenario by com-
paring the request rate with a fixed or varying global threshold
and selectively refusing service to clients once this threshold
has been crossed. However, this approach does not take into
account differences in the amount of work that could be
performed in response to accepting different types and/or
instances of services requests for servicing. In addition, it is
difficult, if not impossible, to define a single global threshold
that is meaningful (much less that provides acceptable per-
formance) in a system that receives different types of requests
at varying, unpredictable rates, and for which the amount of
work required to satisfy the requests is also varying and
unpredictable. While many services may have been designed
to work best when client requests are uniformly distributed
over time, in practice such temporal uniformity in work dis-
tribution is rarely encountered. Furthermore, in at least some
environments, workloads may be non-uniform not only with
respect to time, but also non-uniform with respect to the data
set being operated upon—e.g., some portions of data may be
accessed or modified more frequently than others. Service
providers that wish to achieve and retain high levels of cus-
tomer satisfaction may need to implement techniques that
deal with workload variations in a more sophisticated man-
ner.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1a illustrates an example of work request arrival rate
variations, and FIG. 15 illustrates a system in which token
buckets may be used to make admission control decisions in
the presence of such variations, according to at least some
embodiments.

FIG. 2 provides a high-level overview of a token based
admission control mechanism, according to at least some
embodiments.

FIG. 3 illustrates example configuration properties of a
token bucket used for admission control, according to at least
some embodiments.

FIG. 4 illustrates an example of the accumulation of
unused tokens from a provisioned-capacity bucket into a
burst-mode bucket, according to at least some embodiments.

10

15

20

25

30

40

45

50

55

60

2

FIG. 5 illustrates the use of respective token buckets for
admission control for reads and writes, according to at least
some embodiments.

FIG. 6 illustrates a burst-mode token bucket set comprising
one or more local-burst-limit buckets, one or more shared-
resource capacity buckets, and one or more replication-man-
agement buckets, according to at least some embodiments.

FIG. 7 illustrates an example of a classification of work
request bursts into categories for admission control purposes,
according to at least some embodiments.

FIG. 8 illustrates an example of the use of a compound
token bucket comprising a combination of a peak-burst token
bucket and a sustained-burst token bucket for burst-mode
admission control, according to at least some embodiments.

FIG. 9 illustrates the use of peak-burst and sustained-burst
buckets dedicated to respective categories of work opera-
tions, according to at least some embodiments.

FIG. 10 is a flow diagram illustrating aspects of operations
that may be performed to implement a token-based admission
control mechanism for work requests at a network-accessible
service, according to at least some embodiments.

FIG. 11 is a flow diagram illustrating aspects of operations
that may be performed to implement a token-based admission
control mechanism for handling burst-mode operations using
a plurality of burst-mode token buckets at a network-acces-
sible service, according to at least some embodiments.

FIG. 12 is a flow diagram illustrating aspects of token
consumption, refill and transfer operations that may be per-
formed for admission control, according to at least some
embodiments.

FIG. 13 is a flow diagram illustrating aspects of operations
that may be performed to adjust token counts in one or more
token buckets after work operations corresponding to an
admitted work request complete, according to at least some
embodiments.

FIG. 14 is a flow diagram illustrating aspects of operations
that may be performed to modify burst-mode admission con-
trol parameters in response to administrative events, accord-
ing to at least some embodiments.

FIG. 15 is a flow diagram illustrating aspects of operations
that may be performed to adjust parameters used for token-
based burst-mode admission control, according to at least
some embodiments.

FIG. 16 illustrates an example of non-uniform distribution
of work requests with respect to different subsets of data
managed by a service, in combination with non-uniformity of
work request arrival rates, according to at least some embodi-
ments.

FIG. 17 illustrates example iterations of a token-sharing
protocol that may be implemented to alleviate effects of spa-
tial non-uniformity of data access, according to at least some
embodiments.

FIG. 18 illustrates examples of token sharing peer groups
that may be established in an environment in which data
partitions are replicated, according to at least some embodi-
ments.

FIG. 19 illustrates an example of the use of token sharing at
a database service to support workload management for sec-
ondary indexes, according to at least some embodiments.

FIG. 20a-204 illustrate examples of message sequence
flows between participants in a token-sharing protocol,
according to at least some embodiments.

FIG. 21 is a flow diagram illustrating aspects of operations
that may be performed to support token sharing for burst-
mode operations, according to at least some embodiments.

FIG. 22 illustrates an example of a shared resource with a
throughput limit greater than the combined provisioned



US 9,218,221 B2

3

capacities of work targets that share the resource, according
to at least some embodiments.

FIG. 23 illustrates examples of resources that may be
shared by work targets at a storage node of a service, accord-
ing to at least some embodiments.

FIG. 24 illustrates an example of operations performed to
compute the number of excess tokens to be distributed among
work targets sharing a resource, according to at least some
embodiments.

FIG. 25 is a flow diagram illustrating aspects of operations
that may be performed to implement an equitable distribution
of excess tokens among work targets sharing a resource,
according to at least some embodiments.

FIG. 26 illustrates example components of a pricing man-
ager than may be implemented for burst-mode operations,
according to at least some embodiments.

FIG. 27 illustrates example elements of a token-based pric-
ing policy, according to at least some embodiments.

FIG. 28 is a flow diagram illustrating aspects of operations
that may be performed to determine billing amounts for burst-
mode operations, according to at least some embodiments.

FIG. 29 is a flow diagram illustrating aspects of operations
associated with conditional burst-mode pricing, according to
at least some embodiments.

FIG. 30 is a flow diagram illustrating aspects of operations
that may be implemented to enable client selection of pricing
policies, according to at least some embodiments.

FIG. 31 is a flow diagram illustrating aspects of operations
that may be implemented to enable a marketplace for burst-
mode tokens, according to at least some embodiments.

FIG. 32 is a flow diagram illustrating aspects of operations
that may be implemented for pricing transfers of tokens
between different partitions of a work target, according to at
least some embodiments.

FIG. 33 is a flow diagram illustrating aspects of operations
that may be implemented for pricing changes to token bucket
configuration settings, according to at least some embodi-
ments.

FIG. 34 is a block diagram illustrating an example com-
puting device that may be used in at least some embodiments.

While embodiments are described herein by way of
example for several embodiments and illustrative drawings,
those skilled in the art will recognize that embodiments are
not limited to the embodiments or drawings described. It
should be understood, that the drawings and detailed descrip-
tion thereto are not intended to limit embodiments to the
particular form disclosed, but on the contrary, the intention is
to cover all modifications, equivalents and alternatives falling
within the spirit and scope as defined by the appended claims.
The headings used herein are for organizational purposes
only and are not meant to be used to limit the scope of the
description or the claims. As used throughout this application,
the word “may” is used in a permissive sense (i.e., meaning
having the potential to), rather than the mandatory sense (i.e.,
meaning must). Similarly, the words “include,” “including,”
and “includes” mean including, but not limited to.

DETAILED DESCRIPTION

Various embodiments of methods and apparatus for imple-
menting burst-mode admission control using token buckets
and associated pricing policies are described. The term
“admission control” may be used herein to represent opera-
tions performed to determine whether received work requests
(such as read or write requests directed to a storage service)
are to be accepted for implementation, and a set of software
and/or hardware entities involved in performing admission

10

15

20

25

30

35

40

45

50

55

60

65

4

control may collectively be referred to as “admission control-
lers”. Admission control using token buckets may be
employed, for example, in a variety of environments in which
a network-accessible service (such as a multi-tenant storage
or database service) supports a provisioned workload model.
In a provisioned workload model, a given object to which
work requests may be directed may be set up or configured in
such a way that it is normally able to support up to a particular
rate of work requests (a “provisioned throughput capacity”)
with acceptable response times for the work requests. The
term “throughput capacity” is used herein to represent the
ability of a resource (e.g., a storage object, a database table, or
a partition of a storage object or database table) to complete
work requests at a given rate. Throughput capacity may be
expressed, for example, in units such as work operations per
second, such as logical or physical reads or writes per second
in the case of storage resources. The term “work target” may
be used herein for a resource or object implemented and/or
managed by a network-accessible service, to which work
requests may be directed. In at least some embodiments, a
given admission controller may be responsible for making
admission decisions for a plurality of work targets.

In one embodiment, for example, a network-accessible
multi-tenant database service may set up a database table (a
work target) configured for handling up to X read or write
operations per second (i.e., the provisioned throughput capac-
ity of the table may be set up as X operations per second). The
terms “provisioned throughput capacity” and “provisioned
capacity” may be used interchangeably herein. In at least
some embodiments, the amount that the corresponding client
has to agree to pay for the establishment and use of the table
may be based on the provisioned capacity; e.g., as a conse-
quence of a service level agreement for the work object with
the client, the client may (at least in the absence of extraor-
dinary circumstances such as catastrophic events) expect that
the service should be able to keep up with work request arrival
rates up to the provisioned capacity. In order to be able to
support the provisioned capacity, the database service may
take various steps such as identifying and utilizing storage
devices with adequate storage capacity and performance
capabilities to store the table’s contents and support desired
throughput levels and response times, distributing portions of
the table’s contents among multiple such devices for work-
load balancing purposes, and so forth. In such an example
scenario, after a provisioned throughput capacity has been
determined or set for the table (e.g., if a client’s request to
create the table with the specified throughput capabilities has
been accepted, or a corresponding service level agreement
has been approved by the relevant parties), as long as read or
write requests directed at the table arrive at a rate of X
requests per second or less, the database service may gener-
ally be responsible for accepting and executing the requests
with reasonable response times. If work requests directed at
the object arrive at a rate higher than the provisioned capacity,
however, the object may be deemed to be operating in a “burst
mode” of operation, and while the service may make a best-
effort attempt to accept and execute such burst-mode work
requests, some burst-mode work requests may be delayed or
rejected. In some embodiments, the provisioned capacity of a
given work target may be used internally by the network-
accessible service for administrative purposes—e.g., the ser-
vice may not necessarily reveal the provisioned capacity to a
client, even though the provisioned capacity may be used
internally to decide such parameters as the mapping of the
work target and its workload to various lower-level resources
(such as storage devices or servers).



US 9,218,221 B2

5

In some embodiments in which a provisioned workload
model is employed, work tokens arranged in logical contain-
ers or “buckets” may be used to represent available through-
put capacity of a resource, and such buckets may thus be used
to determine whether a given work request should be
accepted for execution. The term “available throughput
capacity” may be used herein to represent an estimate or
measure of how much additional throughput the resource can
provide, given its current workload. For example, a given
storage device may be configured with a provisioned capacity
ot 100 work operations (e.g., reads or writes) per second, and
may, during a given second, be supporting a workload of 60
operations per second. In this example, its available through-
put capacity may be (100-60), or 40 operations per second. A
bucket may be populated (or “refilled””) with 100 tokens every
second to represent the provisioned capacity in one imple-
mentation. As work requests arrive, tokens may be consumed
from the bucket, which may be termed a provisioned-capacity
bucket—e.g., 60 of the tokens may be consumed in a second
in which 60 work requests are received, leaving 40 tokens
representing the available throughput capacity. As long as the
work request rate remains no higher than the provisioned
capacity, the storage device may be considered to be operat-
ing normally, or in a normal mode, and a set of parameters
applicable to normal operations may be used for admission
control. As described below in further detail, if the work
request arrival rate exceeds the provisioned throughput
capacity (e.g., 100 work operations per second in this
example), the storage device may be deemed to be operating
in burst mode in contrast to normal mode, and a different set
of admission control parameters may be used. The token
population of the provisioned capacity bucket may be
exhausted, and one or more additional buckets (termed burst-
mode buckets) may be used to handle admission control
during burst mode. A number of different approaches may be
taken to populate and consume the tokens in the burst-mode
bucket(s) in different embodiments, e.g., to enable the service
to provide best-effort support for burst-mode operations
within certain constraints. It is noted that available through-
put capacity of a given resource (and hence the workload level
corresponding to burst mode operations) may be dependent
on any combination of a variety of different factors in difter-
ent embodiments, such as the capabilities of the underlying
hardware or software, and/or policies being implemented to
control or limit the throughput at the resource (based on load
balancing considerations, fairness considerations, business/
pricing considerations, or some combination of factors other
than just the native capabilities of the hardware/software).

According to one embodiment, a work target may be
deemed to be operating in normal mode as long as the rate of
work requests directed to it is at or below the a specified level
(e.g., the provisioned capacity of the work target), and may be
deemed to be operating in burst mode if the rate of work
requests exceeds the specified level. When any given work
request is received, the token population of a normal-mode
token bucket associated with the work target may be deter-
mined. If the token population of the normal-mode token
bucket meets a threshold criterion (e.g., if it is more than one,
or above some threshold value), this may indicate to the
admission controller that the work target is in normal mode.
Thus, the admission controller may not need to monitor
arrival rates directly to determine the mode of operation in
such embodiments—instead, token counts in the normal-
mode token bucket may be used for mode determination,
potentially reducing the workload of the admission controller
relative to scenarios in which arrival rates have to be moni-
tored for admission control. The request may be accepted for

10

15

20

25

30

35

40

45

50

55

60

65

6

execution in normal mode, and one or more tokens may be
consumed from the normal-mode bucket.

If, however, the normal-mode bucket population does not
meet the threshold criterion, the work target may be deemed
to be in. burst mode, or at least a determination may be made
that the work target would enter burst mode if the work
request were accepted for execution. Accordingly, the admis-
sion controller may determine the token population of at least
one bucket of a set of burst-mode token buckets. If the token
population of the burst-mode token bucket or buckets meets a
second threshold criterion (e.g., if a burst-mode token bucket
contains at least one token), the work request may be accepted
for execution. The population of the burst-mode bucket or
buckets may be modified to reflect the fact that the work
request has been accepted. In at least one embodiment, the
admission controller may consume a particular number of
tokens from the burst-mode token bucket(s), e.g., based on an
estimate of the amount of work to be performed to complete
or satisfy the work request, and/or based on a token consump-
tion policy applicable for burst-mode operations. One or
more work operations (e.g., reads or writes in the case of work
targets comprising storage or database objects) may be initi-
ated in accordance with the work request after it is accepted.

According to at least some embodiments, if the token
population of the normal-mode token bucket does not indi-
cate that the work target is in burst-mode, the normal-mode
token bucket alone may be used for admission control (e.g.,
some number of tokens may be consumed from the normal-
mode token bucket for each work request accepted as
described above). Thus, the population of the burst-mode
bucket(s) may not play a role during normal mode admission
control operations in at least some embodiments. In some
embodiments, even during normal mode operations, when a
work request is accepted, tokens may be consumed from one
or more burst-mode buckets as well as from one or more
normal-mode token buckets as per the respective token con-
sumption policies of the burst-mode and normal-mode buck-
ets. It is noted that at least in some embodiments, tokens may
be added to burst-mode buckets in accordance with the appli-
cable refill policies even during normal mode. If the work
target is in burst mode, and the population of the burst-mode
bucket or buckets does not meet the second threshold crite-
rion (e.g., if sufficient tokens are not found in the burst-mode
buckets to accept the work request), the work request may be
rejected, delayed or retried in some embodiments. In at least
some embodiments, when sufficient tokens are not available
to accept a given work request, the work request may be
retried one or more times (e.g., up to a configurable retry
count limit) without notifying the client that submitted the
request. If the work request is ultimately accepted, the client
that issued the work request may experience a higher-than-
normal total response time for the request, but may remain
unaware that the request was rejected at least once.

As described below in further detail, the normal-mode and
burst-mode token buckets may be refilled with tokens accord-
ing to respective refill policies at various points in time. In one
embodiment, a normal-mode token bucket may be refilled at
a rate equal to the provisioned capacity of the work target,
subject to a maximum token population limit. Such a normal-
mode token bucket may be referred to as a provisioned-
capacity token bucket in at least some embodiments. One or
more burst-mode token buckets may be refilled at a rate
proportional to (but not necessarily equal to) the provisioned
throughput capacity of the work target in at least some
embodiments. Keeping the refill rates of burst-mode buckets
proportional to the provisioned capacity of the work target
may ensure that different work targets handle burst-mode



US 9,218,221 B2

7

workloads proportional to their respective provisioned capac-
ity. For example, if client C1 of a database service is paying an
amount Al for a table T1 with provisioned capacity P1, and
client C2 is paying A2 for a table T2 with provisioned capac-
ity P2, where P1>P2 and A1>A2, then the burst-mode token
bucket(s) for T1 would be refilled at a higher rate than the
burst-mode token bucket(s) for T2, so that higher burst rates
ofwork requests are supportable for T1 than for T2, as may be
expected since A1>A2.

In some embodiments, the service may utilize different
admission control parameters for different types of work
request arrival rate bursts. For example, consider a work
target W implemented by a service S with a provisioned
capacity P operations per second. Work request arrivals at a
rate greater than P per second may be categorized as bursts.
However, not all bursts may impact the service S in the same
way. If the client submits work requests at a rate of 100 P per
second, for example, service S may only be able to handle the
requests for a very short duration without negatively impact-
ing other clients or running out of resources. If the client
submits work requests at the rate of 2 P per second, however,
the service may be able to handle the requests for a longer
period. Accordingly, in one embodiment, a plurality of burst-
mode token buckets may be set up, such as a peak-burst
bucket to handle sharp short-term peaks in arrival rates, and a
sustained-burst bucket to handle longer bursts with lower
maximum request rates. The combination of the peak-burst
token bucket and the sustained-burst token bucket may be
referred to as a “compound” token bucket (or compound
bucket) herein. The admission controller may, in such an
embodiment, determine a peak burst rate at which work
requests directed to the work target are to be accepted for
execution, and a peak burst window size indicative of a maxi-
mum duration for which work requests at the peak burst rate
are to be accepted. In addition, the admission controller may
determine a sustained burst rate smaller than the peak burst
rate, and a sustained burst window size greater than the peak
burst window size, where the sustained burst window size is
indicative of a maximum duration for which work requests
directed to the work target at the sustained burst rate are to be
accepted. While the window sizes may generally be indica-
tive of the durations for which respective burst rates can be
sustained under certain conditions (e.g., assuming no refills
during the burst) in some embodiments, in practice the
achieved durations may not exactly match the window sizes
(e.g., because refill operations may in fact be performed dur-
ing the bursts). The maximum token populations of the two
burst-mode buckets may be set based on their respective
maximum burst rates—e.g., in one implementation, the maxi-
mum token population of the peak-burst bucket may be set to
the product of the peak burst rate and the peak burst window
size, while the maximum token population of the sustained-
burst bucket may be set to the product of the sustained burst
rate and the sustained burst window size. Both buckets may be
used for admission control during burst mode operations—
e.g. in response to receiving a work request directed at the
work target, the admission controller may accept the work
request for execution based at least in part on the respective
token populations of the peak-burst token bucket and the
sustained-burst token bucket. In at least some embodiments,
different consumption rates and/or different refill rates may
apply to the peak-burst bucket and the sustained-burst bucket.

By using the compound bucket technique, the admission
controller may be able to support very high burst rates for
short durations, and lower burst rates for longer durations in
such embodiments. Consider an example scenario in which
the provisioned capacity (pr) of a work target is 100 opera-

5

10

15

20

25

30

35

40

45

50

55

60

8

tions/second (100 ops/sec), the peak burst rate (pbr) associ-
ated with a peak-burst bucket PBB is 1000 ops/sec, the peak
burst window size (pbw) is 6 seconds, the sustained burst rate
(sbr) associated with a sustained-burst window SBB is 200
ops/sec, and the sustained burst window size (sbw) is 60
seconds. Assume further that the maximum population of the
peak-burst bucket (PBB-max) is set to the product of pbr and
pbw (1000%*6, or 6000 tokens), and the maximum population
of'the sustained burst bucket (SBB-max) is set to the product
of'sbr and sbw (200%60, or 12000 tokens). Consider a burst of
work requests B that begins at time T (i.e., in this example
scenario, the admission controller has determined that the
normal-mode bucket has insufficient tokens at time T for
normal mode operations, so burst-mode parameters apply).
Assume for ease of explanation that PBB is refilled with 200
tokens every second (subject to the PBB-max limit) and SBB
is refilled with 100 tokens every second (subject to the SBB-
max limit), and that the work target remains in burst-mode for
this example. Each work request is assumed to result in one
actual work operation (e.g., a read or a write), and one token
is to be consumed from each of burst-mode buckets, PBB (the
peak-burst bucket) and SBB (the sustained-burst bucket) to
accept a given request. Both PBB and SBB are assumed to be
full at time T: PBB has 6000 tokens, and SBB has 12000
tokens.

First, consider a scenario in which the burst B consists of
arrivals at 1000 requests/sec. After one second, at time T+1,
the population of PBB would be (6000-1000+200)=5200,
because PBB started with 6000 tokens, 1000 tokens were
consumed due to the arrivals, and 200 were added in accor-
dance with PBB’s refill policy. Similarly, at time T+1, SBB’s
population would be (12000-1000+100)=11100. Every sec-
ond for the next few seconds while requests arrive at 1000
requests/second, PBB’s net population would fall by 800
tokens, while SBB’s would fall by 900. Accordingly, the

token populations of PBB (termed pop(PBB)) and SBB
(termed pop(SBB)) would decline as follows: at time T+2:
pop (PBB)=4400, pop(SBB)=10200; Time T+3:
pop(PBB)=3600, pop(SBB)=9300; Time T+4:
pop(PBB)=2800, pop(SBB)=8400; Time T+5:
pop(PBB)=2000, pop(SBB)=7500; Time T+6:
pop(PBB)=1200, pop (SBB)=6600; Time T+7:

pop(PBB)=400, pop(SBB)=5700.

During the second following T+7, assuming that burst B
continues at 1000 requests per second, PBB would run out of
tokens in this example, and at least some requests would be
rejected (even though SBB still has enough tokens). Thus, the
high arrival rate bursts of 1000 requests per second would
only be sustainable for approximately 7-8 seconds in this
example.

In contrast, consider a scenario in which the burst B com-
prises 200 requests per second. Every second, PBB would
lose no net tokens—200 would be consumed, and 200 would
be refilled. Every second, SBB (which starts with 12000
tokens) would lose 100 tokens: 200 would be consumed, 100
would be refilled. Accordingly, it would take approximately
12000/100=120 seconds to exhaust SBB, and so a burst of
200 requests/second would be sustainable for approximately
120 seconds with the assumed parameter settings. Thus, a
smaller burst rate of 200 requests/sec would be accommo-
dated for a much longer time than a sharp burst of 1000
requests/sec in this example scenario. In practice, in various
embodiments, the arithmetic may get more complicated, e.g.,
because the normal-mode buckets may come into play as they
get refilled, the burst-mode arrival rates may not remain flat as
assumed, and other factors (such as consumption policies that
require different numbers of tokens for different types of
requests) may have to be taken into account.



US 9,218,221 B2

9

In some embodiments, respective burst-mode buckets may
be used for different categories of work requests—e.g., in a
storage or database service environment, one or more burst-
mode buckets may be maintained for read operation requests,
and one or more burst-mode buckets may be maintained for
write operation requests. In one embodiment in which a pro-
visioned-capacity bucket is used, if after a certain time inter-
val some tokens of the provisioned-capacity bucket remain
unused, the unused tokens may be “banked” or logically
transferred to one or more burst-mode buckets, so that at least
in principle the client may be able to utilize the unused pro-
visioned-capacity tokens during bursts. In some embodi-
ments, a set of burst-mode token buckets may be used to take
into account the throughput capacity limitations of one or
more shared resources. For example, if a database table par-
tition is located on a shared storage device on which other
tables’ partitions are also located, in addition to using burst-
mode buckets as described above, a shared-resource capacity
bucket may be used to represent the available throughput
capacity of the shared storage device, and in order to accept a
work request, tokens may be consumed from the shared-
resource capacity bucket as well. In some embodiments, the
number of tokens consumed to accept a given work request
may be based on an estimate of the work required for the
request, and if the initial estimate is found to be inaccurate,
tokens may be consumed (or added) to various buckets when
the actual amount of work performed becomes known.
Details regarding these and various other aspects of token-
based admission control policies for burst-mode operations
are provided below.

In the case of some types of storage-related network-ac-
cessible services, a given client’s data set may be distributed
between multiple work targets for which admission control is
performed independently using respective sets of token buck-
ets in some embodiments. For example, a database service
may organize a large table as a set of N partitions, with
token-based decisions as to whether work requests directed to
a given partition are to be accepted being made independently
with respect to other partitions. In such embodiments, the
problem of non-uniformity of client workloads may have an
added spatial dimension, in addition to the dimension of
temporal non-uniformity. That is, when the combined work-
load for all the client’s data is considered, it may be the case
that not only are work requests distributed non-uniformly
over time (i.e., that during some time periods, work request
arrive at much higher rates than during other time periods),
but work requests are also distributed non-uniformly over
data space (i.e., that some subsets of the client’s data are
accessed and/or updated more frequently than others). In
some example scenarios of spatial non-uniformity, it may be
the case that at least for some time periods, the number of
tokens available at one data partition P1 owned by a given
client C1 is much higher than at another data partition P2
owned by the same client C1, while the workload is much
higher at P2 than at P1. This may lead to work requests being
rejected at the heavily-accessed partition, even though, when
all the client’s partitions are considered as a whole, there may
have been enough tokens available to avoid the rejections.
Accordingly, in at least some embodiments, a mechanism for
token sharing among a group of work targets may be imple-
mented.

In one embodiment in which token sharing is implemented,
a plurality of work targets may be configured with respective
token buckets for admission control. An iteration of a token
sharing protocol may begin when a determination is made
that a token sharing evaluation criterion has been met at a
particular work target WT1. That is, WT'1 may be configured

10

15

20

25

30

35

40

45

50

55

60

65

10

to evaluate whether it is worthwhile for it to attempt to obtain
additional tokens from one or more other work targets, or to
transfer tokens to one or more other work targets. Different
criteria to initiate such evaluations may be used in different
embodiments—e.g., in some embodiments, each work target
may be configured to evaluate token sharing once every X
seconds or minutes by default; in other embodiments, a given
work target may be configured to evaluate token sharing ifthe
token count in some set of its token buckets falls below a
threshold or rises above a different threshold, or if a rejection
rate for work requests rises above a threshold.

As part of the evaluation process, in some embodiments the
work target WT1 may identify a second work target WT2 with
which token population information pertaining to some set of
token buckets is to be exchanged. For example, token popu-
lation counts of a burst-mode token bucket may be exchanged
between WT1 and WT2 in one implementation. Based at least
in part on a comparison of the token counts, the two work
targets may determine whether some number of tokens
should be shared or transferred—e.g., the work target with
more tokens may agree to provide some tokens from a source
bucket to a destination bucket at the work target with fewer
tokens. If a decision to transmit tokens is made, the popula-
tion of the destination bucket may be increased by some
number of tokens Nt, and the population of the source bucket
may be increased by Nt. After the tokens have been trans-
ferred, admission control decisions may be made using the
newly modified token populations at both participating work
targets. The participants in the token sharing protocol may be
termed “token sharing peers”, and the group of work targets
that participate in the protocol may be termed a “token shar-
ing group” or a “token sharing peer group” herein. The token
sharing protocol steps (e.g., the evaluation steps of the pro-
tocol and the token sharing steps) may be performed itera-
tively, e.g., based on triggering conditions being met, at ran-
domly selected times or in accordance with a deterministic
schedule in some implementations. Different work target
pairs may participate in different iterations in at least some
embodiments—that is, not all the work targets of a tokens
haring peer group may be involved in a given iteration of the
protocol. In some embodiments, the token sharing protocol
may be implemented collectively by the admission control-
lers of the work targets of the token sharing group.

Membership in a token-sharing group may be based on any
of several factors in different embodiments. In some embodi-
ments, for example, tokens may be shared only among parti-
tions of a single database table. In other embodiments, tokens
may be shared among all the partitions of a set of tables owned
by the same client, or by some set of cooperating clients. In
one embodiment in which a non-relational database service
implements secondary indexes for a given base table using
derived tables, as described below in further detail, token
sharing may be implemented among the partitions of the base
table and the partitions of the derived table(s). In some
embodiments, clients may be enabled to explicitly specify the
member work targets of a token sharing group, while in other
embodiments, the service rather than the clients may deter-
mine token sharing membership. Similarly, the specific types
of token buckets among which token sharing is used may
differ in different embodiments—e.g., in some embodiments,
tokens may be shared by work targets among burst-mode
token buckets only, while in other embodiments, tokens may
also or instead be shared among normal-mode buckets.

In some embodiments in which different work targets are
assigned respective provisioned throughput capacities, a
number of work targets, such as table partitions belonging to
different clients, may share a single resource such as a storage



US 9,218,221 B2

11

device. The shared resource may itself have a throughput
limit TL, which may typically be higher than the combined
provisioned capacities (PCs) of the set of work targets sharing
the resource. To avoid overloading the shared resource, for
example, the network-accessible service being implemented
at the work targets may have configured the work targets in
such a way that their combined provisioned capacities do not
exceed the throughput limit of the shared resource upon
which the work targets rely to complete client work opera-
tions. The work targets in such a scenario may be referred to
as members of a “resource sharing group”. Each such work
target may have an associated set of token buckets, such as
one or more normal-mode token buckets and one or more
burst-mode token buckets.

With respect to the maximum throughput sustainable by
the shared resource, in at least some implementations, a
buffer of excess capacity relative to the combined provisioned
capacities of the resource sharing group may thus be main-
tained. That is, even when all the work targets of the resource
sharing group receive work requests at their provisioned
capacity, the shared resource may be able to handle additional
load. In some cases, e.g., when one or more of the work
targets of the resource sharing group experience bursts of
high work request arrivals that they cannot handle, it may be
useful to distribute some number of additional tokens to the
resource sharing work targets (e.g., beyond the number of
tokens already generated for the work targets based on their
respective bucket refill polices). The additional tokens may be
considered to represent at least a portion of the excess capac-
ity buffer of the shared resource. It is noted that such “excess”
tokens may not necessarily be associated with any given
bucket prior to the time when the decision to distribute them
is made: i.e., new tokens may be generated for distribution in
at least some embodiments. In other embodiments, the excess
tokens may be present in a bucket explicitly representing the
shared resource’s throughput capacity. When distributing
such excess tokens, the provider of the network-accessible
service may wish to ensure some level of fairness in the
distribution, so that, for example, a given client’s work target
WT1 is not given special treatment by being allowed to accu-
mulate all the excess tokens, while another client’s work
target W12 sharing the same resource is not provided any
excess tokens. A number of different fairness-related factors
may have to be taken into account when distributing the
excess tokens. For example, in one embodiment, the excess
tokens may be distributed among the work targets based on
the respective provisioned capacities of the work targets,
and/or based on the recent work request arrival rates at the
work targets.

As indicated above, according to at least some embodi-
ments, a number of work targets of a network-accessible
service (such as database table partitions of a database ser-
vice) may be configured to utilize a shared resource (such as
a shared storage device) in response to accepted work
requests. Each such work target may have a respective set of
token buckets set up for admission control of arriving work
requests; that is, a decision as to whether to accept or reject a
work request for execution at a given work target may be
based on the token population of one or more buckets of that
work target. A service management component, such as a
token distributor associated with the shared resource, may be
configured to perform token distribution iteratively in some
embodiments, with each cycle or iteration initiated according
to some schedule, or based on the detection of some trigger-
ing conditions. In at least some embodiments, the toke dis-
tributor may determine, for a given time period corresponding
to an iteration of the token distribution protocol, the com-

30

40

45

50

12

bined number of excess tokens to be distributed among the
buckets of the resource sharing work targets. The combined
number may, for example, be a function of the difference
between the throughput limit of the shared resource, and the
sum of the provisioned capacities of the work targets.

The tokens may be distributed among the work targets
based ona combination of several factors in different embodi-
ments. In some embodiments, the specific number of tokens
provided to different work targets may be computed as
another function, based at least in part on the relative arrival
rates and the relative provisioned capacities of the work tar-
gets. The arrival rates of work requests at each work target of
the resource sharing group may be monitored, and some
statistical metric of arrival rates over time may be computed,
such as the mean arrival rate over each successive five-minute
interval. For a given token distribution iteration, the arrival
rates metrics for some number of recent intervals may be used
for the computation—e.g., for a given five-minute token dis-
tribution iteration, the arrival rate ratios for the previous five-
minute period may be taken into account, or the arrival rate
ratios of the last K five-minute intervals may be taken into
account. The combined number of tokens may then be dis-
tributed to one or more of the work targets (e.g., by increasing
token population of one or more buckets of the work targets,
such as their respective burst-mode buckets) based on the
arrival rate ratios and on the provisioned capacity ratios. The
adjusted token bucket population(s) resulting from the distri-
bution may be used for admission control at the work targets.

It is noted that at least in some cases, for a given iteration,
the distributor may decide not to distribute any excess tokens
at all—e.g., if the sum of the provisioned capacities of the
work targets was found to be close to the peak throughput
supported by the shared resource, or if the arrival rates were
very low. Over time, the relative weights assigned to the
arrival rate metrics and/or the provisioned capacity metrics in
the token distribution mechanism may be adjusted, or the
functions that govern token distribution may be adjusted, e.g.,
based on how successful the distribution mechanism is found
to be in reducing or avoiding work request rejections at the
different work targets. In some embodiments, excess tokens
may be added to only burst-mode buckets, while in other
embodiments, tokens may be added to normal mode buckets
as well or instead. Combinations of factors other than work
request arrival rates and provisioned capacities may be used
for fair distribution of excess shared resource capacity in
some embodiments. In at least some implementations, the
throughput limits of more than one shared resource may be
taken into account when determining whether and how many
tokens are to be distributed.

In at least some embodiments, clients utilizing the net-
work-accessible services at which token-based admission
control is used may be billed different amounts for normal-
mode operations than they are for operations performed dur-
ing burst mode, or for operations (such as token sharing and
excess token distributions) that may be performed in antici-
pation of future bursty workloads. Respective pricing policies
may be associated with token consumption and/or transfers at
normal-mode buckets and at burst-mode buckets in some
such embodiments. In some embodiments, a pricing manager
component of the service may be responsible for defining
and, in collaboration with (or as part of) the admission con-
troller, implementing pricing polices associated with token
population changes in various buckets under various condi-
tions. In one embodiment, a token pricing policy to be applied
to a particular token bucket may be determined (e.g., based on
a selection of the pricing policy by a client, or based on
internal configuration settings of the service), where the pric-



US 9,218,221 B2

13

ing policy defines the types of token population changes to
which it applies, one or more applicability criteria (e.g.,
whether the policy applies only during certain time windows,
or whether the policy only applies when some bucket popu-
lations fall below a specified threshold during burst-mode
operations), and a formula or function that may be used to
compute the pricing amount to be charged to a client for a
particular change to the token population. Clients may be
charged different amounts for different categories of token
population changes in some embodiments—e.g., in one case,
a client may be charged one rate for the consumption of any
token from a particular burst-mode bucket B1, and a different
rate if a token is transferred from bucket B2 to bucket B1. In
at least one embodiment, clients may be charged different
amounts based on how many (and what types of) token buck-
ets are used for admission control—for example, a client that
wishes to support multiple types of burst-mode behavior
using compound token buckets may be charged more than a
client that is willing to use a simpler technique that uses fewer
burst-mode buckets. The pricing manager may record the
changes to various token bucket populations over time, e.g.,
during various periods of burst mode operations. Client bill-
ing amounts may be generated based on the recorded popu-
lation changes.

In at least one embodiment, a network-accessible service
may implement a token marketplace, e.g., by implementing
programmatic interfaces (such as one or more web pages,
web sites, graphical user interfaces, command-line tools and/
or APIs) that clients may use to buy, sell or exchange tokens
usable for admission control during burst modes and/or nor-
mal modes of operation. In some such marketplaces, for
example, clients that are aware that some of their tokens may
not be used during a given future time period may advertise
the availability of the tokens for bidding using an auction
mechanism. Other clients that may need to support higher
workloads than they initially anticipated (and hence higher
workloads than their work targets’ provisioned capacity ) may
bid for, and (if the bid is successful) purchase the tokens from
the seller. The pricing manager and/or other components of
the network-accessible service may facilitate such auctions
and other marketplace transactions, keep track of the token
transfers and prices, and incorporate the marketplace trans-
actions as appropriate in the billing amounts generated for the
clients in at least some embodiments. Additional details
regarding various aspects of the functionality of the pricing
manager and associated components are also provided below.
Example System Environment

FIG. 1a illustrates an example of work request arrival rate
variations, and FIG. 15 illustrates a system in which token
buckets may be used to make admission control decisions in
the presence of such variations, according to at least some
embodiments. In FIG. 1a, the X-axis represents time, while
the Y-axis represents the arrival rate 110 of work requests
directed to a work target such as a storage object or a database
table of a network-accessible service. A given work request
may indicate that the requesting client wishes to perform a set
of'specified logical or physical operations associated with the
work target—e.g., a single work request may translate to one
or more read operations on a portion of the work target, one or
more modification operations, a set of computations, inser-
tions or removals from a work queue, or some combination of
such operations. In at least some embodiments, the client may
indicate a relatively high-level logical operation in a work
request, and the service implementing the work target may be
responsible for determining some corresponding set of lower-
level physical or logical operations that would need to be
performed if the work request were accepted. FIGS. 1aand 16

30

40

45

14

illustrate arrival rates and admission control for an average or
typical category of work requests at a work target; arrival rates
may in general be plotted separately for different categories
of work requests, and respective admission control param-
eters may be used for different work request categories, as
described below in further detail. The provisioned capacity
112 of the work target (assuming uniform or average work
requests) is represented in FIG. 1a by a horizontal line that
intersects the Y-axis at “pr”. The arrival rate may be moni-
tored for a series of time intervals (e.g., for each second, the
number of work requests arriving may be measured and the
requests/second may be plotted on a graph) such as FIG. 1a.
As shown, the arrival rate of work requests varies over time.
During some time periods, the arrival rate is less than the
provisioned capacity pr, and the work target is deemed to be
in normal mode during those time periods, such as normal
periods N1, N2 and N3. During periods when the arrival rate
exceeds pr, the work target may be deemed to be in a burst
mode of operation, such as during burst periods B1 and B2.

The network-accessible service may be obligated (e.g.,
contractually obligated by a service level agreement) to sup-
port work request rates of up to pr in some embodiments. As
shown in FIG. 15, admission controller 180 of the service
may be configured to use a normal-mode token bucket set 120
comprising one or more buckets to make admission control
decisions during normal mode. During burst modes, the
admission controller 180 may utilize a burst-mode token
bucket set 125, comprising one or more other token buckets,
for admission control, with a different set of parameters than
apply to the normal-mode buckets. In at least one embodi-
ment, when a work request 170 is received, the admission
controller may first determine the token population of a nor-
mal-mode bucket. If the normal-mode bucket token popula-
tion is below a threshold (e.g., less than N, where N tokens are
to be consumed in order to accept the work request 170), the
admission controller may conclude that the work target 102 is
in burst mode or that the work target 102 would enter burst
mode if the work request 170 is accepted for execution.

Upon determining, e.g., using the normal-mode bucket set,
that burst-mode parameters are to apply, the admission con-
troller 180 may determine the token populations of at least
one bucket of the burst-mode token bucket set 125 in the
depicted embodiment. If the population meets a particular
criterion, e.g., if N tokens are available within at least one
burst-mode token bucket, the work request 170 may be
accepted for execution, and one or more operations 179 cor-
responding to the accepted work request may be initiated. If
the token population of the burst-mode bucket set 125 does
not meet the particular criterion, the work request 170 may be
rejected, as indicated by the arrow labeled 189. In various
embodiments, a respective set of parameters and policies may
apply to each token bucket of the normal-mode bucket set 120
and the burst-mode bucket set 125—for example, different
buckets may have different token consumption policies (indi-
cating how many tokens are to be consumed under various
circumstances) and different token refill policies (indicating
the circumstances in which tokens are to be added, and the
number to be added at a time). In general, in the depicted
embodiment, the service and the admission controller 180
may be obligated to support normal mode operations, and
make a best effort to accept and complete the client’s requests
during burst mode operations.

It is noted that techniques such as those described above,
employing token buckets for admission control, may be used
in some embodiment in which work targets do not necessarily
have respective provisioned throughput capacities defined,
e.g., in which service level agreements do not oblige the



US 9,218,221 B2

15

service provider to support some explicitly-specified
throughput level for some or all work targets. For example, in
one embodiment, a service provider may simply define burst
mode as occurring whenever a work request arrival rate
exceeds R operations per second, and may use burst-mode
token buckets for admission control under such conditions.
Thus, in different embodiments, the approach taken to deter-
mining whether a work target is in burst mode or not may
differ; in some cases, a provisioned throughput capacity may
define the boundary between normal mode and burst mode,
while in other embodiments, other definitions of burst mode
may be used.

Overview of Token-Based Admission Control

FIG. 2 provides a high-level overview of a token based
admission control mechanism, according to at least some
embodiments. A mechanism that uses a single bucket 202 of
tokens is illustrated for simplicity of presentation; as noted
above, combinations of multiple buckets may be used in some
embodiments, such as one or more buckets for normal-mode
admission control, and one or more buckets for burst-mode
admission control. According to the mechanism, a bucket 202
(e.g., alogical container which may be implemented as a data
structure within a software program in at least some embodi-
ments) set up for admission control purposes associated with
a particular work target 102 such as a data object, object
partition, or partition replica, may be populated with an initial
set of tokens 208 during bucket initialization, as indicated via
arrow 204 A. The initial population may be determined, e.g.,
based on expectations of the workload, service level agree-
ments, a provisioning budget specified by the client that owns
or manages the corresponding data object, or some combina-
tion of such factors in various embodiments. For some types
of buckets the initial population may be set to zero in some
embodiments. In some implementations the initial population
of at least one bucket may be set to a maximum population for
which the bucket is configured.

When an indication of a new work request 170 (such as a
read request or a write request in the case of a storage object
or database object) is received at the admission controller
180, the admission controller may attempt to determine
whether some number N of tokens (where N may be greater
than or equal to 1, depending on implementation or on con-
figuration parameters) are present in the bucket 202 in the
depicted embodiment. If that number of tokens is available in
the bucket, the work request 170 may be accepted or admitted
for execution, and the tokens may be consumed or removed
from the bucket (arrow 210). Otherwise, if N tokens are not
present, the work request 170 may be rejected. In the illus-
trated example, work request 170A has been accepted, work
request 170B has been rejected, and work requests 170C,
170D and 170E are yet to be considered by the admission
controller 180.

As shown by the arrow labeled 204B, the bucket 202 may
also be refilled or repopulated over time, e.g., based on con-
figuration parameters such as a refill rate associated with the
bucket, as described below with reference to FIG. 3. In some
implementations, token refill operations may accompany, or
be performed in close time proximity to, consumption opera-
tions—e.g., within a single software routine, N tokens may be
consumed for admitting a request, and M tokens may be
added based on the refill rate and the time since the bucket was
lastrefilled. Some buckets may also be populated based on the
number of unused tokens in other buckets in some scenarios,
as also described below. Limits may be placed on the maxi-
mum number of tokens a bucket may hold in some embodi-
ments, and/or on the minimum number of tokens, e.g., using
configuration parameters. Using various combinations of

20

35

40

45

16

configuration parameter settings, fairly sophisticated admis-
sion control schemes may be implemented in different
embodiments, especially when multiple buckets are used
together to control admissions to a given object or resource.
In one simple example scenario, to support a steady load of
100 work requests per second, bucket 202 of FIG. 2 may be
configured with an initial population of 100 tokens, a maxi-
mum allowable population of 100 tokens and a minimum of
zero tokens; N may be set to 1, and the refill rate may be set to
100 tokens per second, and one token may be added for refill
purposes (assuming the maximum population limit is not
exceeded) once every 10 milliseconds. As work requests 170
arrive, one token may be consumed for each work request. If
a steady state workload at 100 work requests per second,
uniformly distributed during each second, is applied, the refill
rate and the workload arrival rate may balance each other.
Such a steady-state workload may be sustained indefinitely in
some embodiments, given the bucket parameters listed above.
If, extending the above example, the arrival rate and/or the
refill rate is not uniform, scenarios may arise in which the
bucket 202 remains empty for some (typically small) time
intervals (e.g., if some set of work requests in rapid succes-
sion consume more tokens than the refill mechanism is able to
replace). In such a case, if only a single bucket 202 were being
used for admission control, an arriving work request may be
rejected (or retried after a delay). In order to deal with tem-
poral non-uniformity of workloads, various techniques may
be employed in different embodiments, such as the use of
additional burst-mode token buckets as described with refer-
ence to FIG. 15
FIG. 3 illustrates example configuration properties 302 of
a token bucket, such as bucket 202, which may be used for
implementing various types of admission control policies,
according to at least some embodiments. In some implemen-
tations, the token bucket may be implemented as an
in-memory data structure of the admission controller 180, and
may be written to persistent storage as needed. Such a data
structure may comprise fields representing the current token
population, when the population was last modified, and/or
values for various parameters and policies indicated in FIG. 3.
A token consumption policy 310 may indicate how tokens
are to be consumed for admission control. In some embodi-
ments, the consumption policy 310 may include different
pre-admission policies and post-admission policies, and/or
may be dependent on the state of other buckets or the mode of
operation of the work target. For example, in one embodi-
ment, two buckets may be used for admission control to a
given work target: a provisioned-capacity bucket PB (e.g., in
a normal-mode bucket set 120) and a burst-mode bucket BB
(e.g., in a burst-mode bucket set 125). According to the pre-
admission policy in effect in this example, to admit a new
request, PB’s population may be checked to determine
whether at least one token is present, and according to the
post-admission policy, if the request is admitted, PB’s popu-
lation may be reduced by one. If PB has a token, BB’s popu-
lation may not need to be checked prior to admitting the
request. However, in accordance with the post-admission
policy in effect in some embodiments, one token from BB
may nevertheless be consumed if the request is accepted. In
contrast, continuing the example, if PB does not have any
tokens, the work target may be deemed to be in burst mode,
and BB’s population may be checked to determine whether
BB has at least one token. In burst mode, the request may be
admitted only if BB has a token available, and if the request is
admitted, a token may be consumed from BB. (In some
implementations, in burst mode, the token population of PB
may also be decremented upon a request admission, poten-



US 9,218,221 B2

17

tially making PB’s population negative.) In some embodi-
ments different numbers of tokens may be consumed for
different types of operations from a given bucket based on its
consumption policy. In some embodiments, a token con-
sumption policy may also specify a decay-during-idle param-
eter indicating whether (and at what rate) tokens are to be
deleted from the bucket if the corresponding data object is not
targeted for work requests for some time, or a transfer-upon-
idle parameter indicating whether tokens should be trans-
ferred from one bucket to another if they are not used during
some time interval. In one embodiment, a staleness policy
may be used to consume tokens that have not been consumed
for a specified time interval—e.g., each token may be asso-
ciated with a validity lifetime after which the token may no
longer be useful for admission control purposes. The token
policies (and various other policies such as those described
below) applicable to a given category of bucket may be iden-
tified by a name based on the category herein—e.g., a con-
sumption policy applicable to a normal-mode bucket may be
referred to as a normal-mode consumption policy, while a
consumption policy applicable to a burst-mode bucket may
be referred to as a burst-mode consumption policy.
Properties 302 may include an initial token population
parameter 306 in the depicted embodiment, which indicates
how many tokens are to be placed in the bucket at startup or
initialization. Token refill policy parameter 314 may indicate
at what rate, and/or under what circumstances, tokens are to
be added to the bucket, e.g., to help sustain a rate of work for
which the work target associated with the bucket has been
configured. In some embodiments, one or more of the param-
eters of the bucket may be changed over time—e.g., a default
refill rate may apply to the bucket, but under certain condi-
tions a non-default rate may be used. Maximum population
parameter 318 may indicate the maximum capacity of the
bucket, while minimum population parameter 322 may indi-
cate the lower bound for a bucket’s population. In some
implementations, a bucket’s population may be deemed to
become negative (e.g., the minimum population may be less
than zero) under some circumstances. For example, in one
embodiment in which the work target supports I/O operations
such as reads and writes, the admission controller 180 may
assume or estimate, for simplicity, that incoming client
requests will each result in approximately one actual I/O
operation. However, after an operation request R has been
accepted, in some cases the actual amount of work needed as
a result of admitting R may be substantially greater than the
assumed one I/O: for example, a read request expected to be
fulfilled by one read may end up in a scan of a table that
requires 1000 reads. In such scenarios, in order to ensure that
the impact of the unanticipated extra work is reflected in
subsequent admission control decisions, a number of tokens
corresponding to the extra work (e.g., 1000-1=999 tokens)
may be deducted from the bucket, which may at least tempo-
rarily cause the token count to become negative. The token
count may re-enter positive territory eventually, e.g., based on
the bucket’s refill rates and incoming request rates. A token
deficit policy parameter 324 may specify rules about the
conditions under which token deficits (or negative popula-
tions) are allowed, how long deficits are allowed to remain,
what actions have to be taken to recover from a deficit, and so
forth. In some embodiments, different types of operations
may have different admission control rules, and the types of
operations for which the bucket is to be used may be specified
in applicable operation types parameter 326. In at least some
embodiments, one or more pricing policies 328 that may be
used to determine the amounts that clients are to be charged
for the use of the bucket’s tokens may be indicated in the

25

40

45

18

bucket properties. Examples of the kinds of elements that
pricing policies 328 may include are illustrated in FIG. 17 and
described in further detail below. In different embodiments,
only a subset of the example parameters shown in FIG. 3 may
be employed, while in other embodiments, additional bucket
configuration parameters beyond those shown in FIG. 3 may
be used. Values and/or settings for various properties shown
in FIG. 3, as well as other admission control settings such as
whether burst mode operation is to be supported, may be
programmatically set or modified (e.g., using web service
calls) in at least some embodiments.

Banking Unused Tokens

In some embodiments, in accordance with the applicable
refill rate, a given token bucket may be refilled with tokens
(i.e., tokens may be added to the bucket) periodically or in
response to triggering events such as a completion or initia-
tion of an admission control decision in response to a work
request. In such an embodiment, it may be the case that a
normal-mode token bucket contains some unused tokens at
the time that it is to be refilled, e.g., because, on average
during a previous time interval, work requests arrived at a rate
less than the provisioned capacity. In one embodiment, the
unused tokens from one or more buckets may be banked or
accumulated in one or more other token buckets, e.g., for
potential use later during bursts. FIG. 4 illustrates an example
of the accumulation of unused tokens from a provisioned
capacity bucket into a burst bucket, according to at least some
embodiments.

In the embodiment depicted in FIG. 4, normal-mode
bucket set 120 comprises a provisioned-capacity bucket 420,
configured with a maximum token population M, while burst-
mode token bucket set 125 comprises a burst-mode bucket
422, with a maximum token population B that is equal to or
larger than M. As shown by arrow 452, provisioned-capacity
bucket 420 is refilled at a rate equal to the provisioned capac-
ity pr, subject to the maximum M. Thus, for example, if pr is
100 ops/sec, M=100, and refill operations are performed once
every second, at most 100 tokens may be added to bucket 420
each second. As indicated by arrow 454, tokens may be con-
sumed from bucket 420 at a rate based on the received work-
load requests. Consider two points in time, T1 and T2, where
T2 is one second after T1. Assume that at T1, bucket 420
contained 100 tokens, and during the next second, 75 of those
tokens were consumed for admission control operations asso-
ciated with incoming work requests 170. At T2, bucket 420
still contains 25 unused tokens in this example scenario.

As indicated by arrow 460, such unused tokens may be
accumulated in burst-mode bucket 422 in the depicted
embodiment. Thus, continuing the example, 25 tokens may
be added to bucket 422 at T2. In addition, in the depicted
embodiment, tokens may be added to bucket 422 at its refill
rate (subject to maximum population limit B), which may
also be a function of the provisioned rate pr, as indicated by
arrow 456. During burst mode operations, tokens may be
consumed from bucket 422 at a rate dependent on the arrival
rate of work requests. As indicated by arrow 458 of FIG. 4, in
at least some embodiments, tokens may be consumed from
the bucket 422 based on arrival rates of work requests regard-
less of'the mode of operation—e.g., whenever a work request
is accepted for execution, some number of tokens may be
consumed from a normal-mode bucket 420, and some num-
ber of tokens may be consumed from a burst-mode bucket
422. It is noted that in some embodiments, regardless of the
arrival rate, and regardless of other admission control set-
tings, work requests may not be accepted at a rate higher than
a predetermined maximum-sustainable rate that may be
based on the hardware and/or software limits of the comput-



US 9,218,221 B2

19

ing devices used for the work target. Such a maximum limit
may be set to protect the data on the computing devices from
being corrupted if the devices are stressed beyond their capa-
bilities, for example.

In the embodiment depicted in FIG. 4, the population of
burst-mode bucket 422 increases (subject to the maximum
population limit B, and the consumption of burst-mode
tokens for admitted work requests) over time as more and
more tokens go unused in bucket 420. This may enable the
admission controller 180 to handle larger bursts than may
have been possible if only bucket 422°s own refill rate were
contributing to bucket 422’s population. Such a technique of
banking unused tokens for later use may be especially helpful
in embodiments in which clients are charged for burst-mode
operations as well as for provisioned capacity, as clients may
be able to reduce overall costs by logically transferring
unused tokens between the buckets. In some embodiments,
similar kinds of transfers of unused tokens may also be sup-
ported among other source and destination bucket pairs—
e.g., separate token buckets may be maintained for respective
categories of work requests, and unused tokens from a bucket
for a particular category C1 may be transferred to the bucket
for a different category C2.

Token Buckets for Specific Types of Operations

In some embodiments, a given work target may support
work requests for different categories of operations. For
example, a database table may support read and write opera-
tions in one embodiment. The terms “write operation” or
“write” may refer to operations in which the data and/or
metadata of an object such as a database table, a file, or a
volume is modified, e.g., including creations (writing new or
additional data), updates (changes to pre-existing data, which
may involve in-place overwriting or, e.g., in some write-once
environments, creation of a new version of the data), dele-
tions, renames, and/or moves. The terms “read operations™ or
“reads” may refer to operations that do not involve modifica-
tions. The total amount of work required to respond to a write
request may differ from the amount of work required to
respond to a read request: for example, in some embodiments,
multiple replicas of a given database table or table partition
may be maintained, and a write may have to be completed at
more than one replica for the write work request to be con-
sidered complete, whereas a read request may require access-
ing only a single replica. In some implementations, write
operations may have to be logged, or may have other side
effects such as index modification, which may not be required
for read operations. As a result, the throughput capacity for
reads at a given work target may differ from the throughput
capacity for writes. Consequently, reads and writes may be
treated differently with respect to admission control deci-
sions. FIG. 5 illustrates the use of respective token buckets for
admission control for reads and writes, according to at least
some embodiments.

As shown, the normal-mode bucket set 120 comprises read
provisioned-capacity bucket 502 and a separate write provi-
sioned-capacity bucket 504 in the depicted embodiment.
Burst-mode bucket set 125 comprises a read burst bucket 506
and a write burst bucket 508. When a work request arrives, the
admission controller may determine whether the work
request is for a read or a write, and may use the token popu-
lations of the corresponding type of bucket to (a) decide
whether accepting the work request would result in normal
mode operation or burst mode operation and (b) whether
sufficient tokens are available for consumption in the appro-
priate buckets to accept the work request. The consumption
and/or refilling of tokens in the read buckets may be indepen-
dent of the consumption and/or refilling of tokens in the write

25

30

40

45

20

buckets in the depicted embodiment, and some or all of the
properties and policies depicted in FIG. 3 may be set inde-
pendently for each type of bucket. Thus, it may be the case
that at a given point in time, the work target is in normal mode
with respect to reads, but in burst mode with respect to writes,
or vice versa (i.e., in normal mode with respect to writes, and
in burst mode with respect to reads). The work target may also
be in normal mode with respect to both reads and writes, or in
burst mode with respect to both reads and writes. In some
embodiments, unused tokens may be transferred from a read
bucket to a write bucket, or vice versa, in the embodiment
depicted in FIG. 5—for example, if some tokens remain
unused in write burst bucket 508 at the end of a time interval,
a corresponding number of tokens may be added to the read
burst bucket 506 if the read burst bucket’s population falls
below a threshold.
Shared Resources and Replication Management

Respective sets of burst-mode token buckets of the kinds
illustrated in FIGS. 4 and 5 may be established for each work
target in some embodiments. In at least some embodiments, a
given work target such as a database table or table partition
may utilize at least some resources that are shared by other
work targets—for example, a portion of table Table1 may be
located on the same storage device as a portion of table
Table2. When making admission control decisions, the net-
work-accessible service implementing the work target may
have to take the capabilities of the shared resource into
account as well. For example, in one implementation, a given
storage device may be able to support no more than N read
operations per second, and if that storage device is used for
two different work targets WT'1 and WT2, the available read
throughput capacity of one target may (WT1) may be influ-
enced by the read workload at the other target (WT2). In some
embodiments, a shared-resource bucket whose token popu-
lation represents the available throughput capacity of a
resource shared among multiple work targets may be used for
burst-mode admission control decisions at each of the work
targets. As described below, for certain types of work requests
(such as requests that lead to write operations) in embodi-
ments in which multiple replicas of work targets are main-
tained, one or more buckets associated with replication man-
agement may also be used. Replication management buckets
may be used only for some types of work requests” admission
control in some embodiments—e.g., they may be used for
writes, but not for reads, in such embodiments. FIG. 6 illus-
trates a burst-mode token bucket set comprising one or more
local-burst-limit buckets 604, one or more shared-resource
capacity buckets 606, and one or more replication-manage-
ment buckets 608, according to at least some embodiments.

The three types of burst-mode token buckets shown in FI1G.
6 may be used collectively for admission control, e.g., with
each type of bucket being checked in sequence for available
tokens, and work requests 170 being accepted only if all the
relevant buckets contain sufficient tokens in accordance with
their respective token consumption policies. The order in
which the different token buckets are checked for admission
control may vary in different embodiments. The local-burst-
limit buckets 604 may comprise tokens representing the avail-
able throughout capacity of the work target considered in
isolation, e.g., ignoring throughput limits of shared resources,
and ignoring replication. In one embodiment, the population
of the local-burst-limit bucket(s) 604 may be checked first
when a work request is received. If the local-burst-limit buck-
ets contain sufficient tokens, the shared-resource capacity
buckets 606 may be checked next. If sufficient tokens are
found in the shared-resource capacity buckets and if respond-
ing to the work request requires data replication, the replica-



US 9,218,221 B2

21

tion-management buckets 608 may be checked next. In the
depicted embodiment, if all the buckets checked contain
enough tokens, the work request may be accepted. If any one
of the buckets checked does not contain enough tokens, the
work request may be rejected, delayed, or retried.

In a scenario in which the local-burst-limit buckets 604
contain insufficient tokens and are checked prior to the other
types of buckets illustrated, a work request may be rejected
even though the shared-resource capacity buckets 606 and/or
the replication-management buckets 608 contain enough
tokens to accept the request based on their respective con-
sumption policies. In some embodiments, a respective local-
burst-limit bucket 604 may be maintained for read requests
and write requests, and/or a respective shared-resource
bucket 606 may be maintained for read requests and write
requests.

In some embodiments, several different types of shared
resources may be considered during admission control, e.g.,
using respective instances of shared-resource buckets. For
example, in one embodiment, a limited number of memory
buffers required for performing read operations may be avail-
able at a server at which the work target is implemented, and
a shared-resource capacity bucket 606 may be established to
represent available memory buffers. Similarly, in another
embodiment, a type of data structure (such as a file descriptor,
of which a limited number may be available in a given oper-
ating system instance in use for the work target) may be used
for each work operation, and a different shared-resource
capacity bucket 606 may be established to represent available
file descriptors. In some embodiments, tokens representing
the surplus throughput capacity of one or more shared
resources (relative to the sum of the provisioned capacities of
the work targets sharing the resources) may be distributed
among the work targets in an equitable manner using an
iterative approach, as described below in further detail.

According to one embodiment, contents of a work target
(such as a database table, a file or a storage volume) may be
distributed among one or more logical partitions by the ser-
vice. For example, a client of a database service may specify
that a table is to hold approximately X terabytes (TB) of data
and is expected to support a workload of Y read or write
operations per second, and the database service may decide to
set up a table with P logical partitions, with sufficient
resources initially being designated for each of the logical
partitions to store X/P TB and support a provisioned capacity
limit of Y/P operations each. (Non-uniform distributions of
provisioned throughput capacity across partitions may be
used in some embodiments—e.g., if some partitions are
known or expected to be “hotter”, or have higher average
request rates, than others.) Admission control decisions may
be made at the logical partition level in at least some such
embodiments. Corresponding to each logical partition, a mas-
ter replica and one or more slave replicas of the partition’s
data may be set up in accordance with a data durability policy
or data replication policy for the data object. The durability/
replication policy may be designed to ensure that data writes
are replicated to a sufficient number of distinct physical loca-
tions, such that the probability of data loss due to factors such
as equipment failures, power loss, and/or natural disasters is
kept below a threshold. In some embodiments, admission
control decisions for write requests may be made at the master
replica, while admission control decisions for reads may be
made at either the master replica or (especially if the client is
willing to accept reads from a potentially slightly out-of-date
version of the data) at a slave replica. In accordance with the
replication policy, when a write request from a client is
accepted, the modified data may have to be successfully rep-

10

15

20

25

30

35

40

45

50

55

60

65

22

licated at N replicas (the master replica and N-1 slave repli-
cas) in some embodiments, e.g., before an acknowledgment
that the write has succeeded is provided to the client. Thus,
because the successful completion of a write requires the use
of slave resources, the available throughput capacity at the
slave(s) (as well as the master) may have to be considered
during admission control for writes. In one embodiment, the
number of slave replicas that are set up may exceed the
minimum number required for the replication policy. The
replication policy may require that a quorum of Q copies of a
write are to be made persistent before the write is deemed
successful, so that a minimum of (Q-1) slave replicas may be
needed. However, for various reasons such as read load bal-
ancing, high availability and the like, the number of slave
replicas maintained may exceed Q-1 in such embodiments. It
is noted that the designation of a particular replica as a slave
or a master may change over time in various embodiments;
for example, if a device at which a master for a given logical
partition is instantiated fails or becomes unreachable, a dif-
ferent replica that was earlier designated a slave may be
selected as the master. In some embodiments, the number of
slave replicas may be changed over the lifetime of a data
object, e.g., in response to a request from the client that owns
the data object. Token-based techniques for admission con-
trol may be applied in peer-to-peer environments as well in
some embodiments, where replicas are not necessarily des-
ignated as masters or slaves; in such en embodiment, the
replica at which an admission control decision for an incom-
ing write request is made may correspond (in terms of the
types of operations performed) to the master replica as
described herein. Thus, in some embodiments employing
peer-to-peer replication in which replicas are for the most part
equivalent to each other in responsibilities, if a write request
is received at a given peer P1, information about the available
throughput capacity of at least one other peer P2 may be used
to decide whether the write request is to be accepted for
execution.

Asindicated above, in at least some embodiments in which
writes are to be replicated, the available throughput capacity
at more than one replica (e.g., a master and at least one slave)
may have to be considered during admission control for
writes, and one or more replication-management buckets 308
may accordingly be used. For example, while the local-burst-
limit buckets 604 may represent available throughput at the
master replica considered in isolation, the replication-man-
agement buckets 308 may represent the master’s view of the
available throughput capacity at one or more slaves.

A slave capacity update protocol may be used to refresh the
information about slave state(s) in the replication-manage-
ment bucket(s) 608 (e.g., the token population of the replica-
tion-management bucket(s) 608 at the master may be updated
based on information received from a slave) in at least some
embodiments. In some embodiments, token buckets may also
be used at slaves for throughput management, in a manner
similar (but not identical) to the manner in which buckets are
used at the master. In accordance with a slave capacity update
protocol, in one such embodiment, a slave may provide popu-
lation snapshots (i.e., point-in-time representations) of one or
more of the slave’s local token buckets (which may include
provisioned-capacity buckets and/or burst-mode buckets) to
the master. For example, one particular slave-side token
bucket may represent available capacity at a shared storage
device at which at least a portion of the slave’s data is stored,
similar to the shared-resource capacity bucket 606 at the
master, and snapshots of the population of such a bucket may
be provided to the master. Any of several different approaches
may be used for providing the snapshots from the slave in



US 9,218,221 B2

23

different embodiments; for example, the snapshots may be
attached to or piggybacked with write acknowledgements
sent from the slave to the master when a write replication is
requested by the master, or the slave may attach the snapshot
to a heartbeat message it is required to send to the master to
inform the master that the slave is up and running.
Compound Token Buckets

As described earlier, different types of work request arrival
bursts may vary in their impact on a network-accessible ser-
vice. A service may be able to handle a very high burst rate for
a short period of time, but may be able to withstand lower
burst rates for longer. In some embodiments, and admission
controller 180 may be configured to limit the durations of
different types of bursts based on their impact on the service,
and bursty work request arrival behavior may be classified
into a plurality of categories to assist with admission control.
FIG. 7 illustrates an example of a classification of work
request bursts into categories for admission control purposes,
according to at least some embodiments.

In FIG. 7 (as in FIG. 1a), the X-axis represents time, and
the Y-axis represents work request arrival rates 110 at a given
work target 102. A graph such as FIG. 7 may be plotted, for
example, by monitoring the number of work requests
received every second (or every N seconds), computing the
count of requests per second, and connecting the points rep-
resenting the request per second values for each time interval.
Provisioned capacity 112 for the work target is represented by
the horizontal line crossing the Y-axis at pr. The work target is
assumed to be in a normal mode of operation whenever the
arrival rate is at or below pr, and in burst mode whenever the
arrival rate is above pr. During the time from TO through T7,
the work target is in normal mode for several periods, such as
the period between T0O and T'1, the period between T2 and T3,
the period between T4 and T5, and the period between T6 and
T7. However, during three periods (T1 to T2, T3 and T4, and
T5 to T6), the work target is in burst mode. The shapes of
bursts B-narrow-1 (during the interval T1-T2) and B-nar-
row-2 (during the interval T5-T6) as represented in the graph
are similar, and both shapes differ from the shape of burst
B-wide-1. Burst peak rates 702 A (the maximum work request
arrival rate during B-narrow-1) and 702C (the maximum
work request arrival rate during B-narrow-2) are substantially
higher than burst peak rate 702B (the maximum work request
arrival rate during B-wide-1).

The admission controller 180 may be configured to main-
tain a compound burst-mode token bucket, comprising two
underlying token buckets in the depicted embodiment. As
described below, one of the underlying token buckets may be
used to allow short bursts with very high arrival rates relative
to the provisioned capacity pr (such as B-narrow-1 or B-nar-
row-2), but to prevent bursts with such high arrival rates from
lasting very long, The other underlying token bucket of the
compound token bucket may be used to allow longer bursts
with lower peak rates, such as B-wide-1. The applicable
parameters and/or policies (e.g., refill rates) may differ for the
underlying buckets. In at least some embodiments, tokens
may be consumed from both underlying buckets in order to
admit a work request for execution during burst mode.

FIG. 8 illustrates an example of the use of a compound
token bucket 801 comprising a peak-burst bucket (PBB) 802
and a sustained-burst bucket (SBB) 804 for burst-mode
admission control, according to at least some embodiments.
As shown, the compound token bucket 801 forms part of the
burst-mode token bucket set 125 for a work target 102 in the
depicted embodiment. Each of buckets 802 and 804 is char-
acterized by a respective burst rate (representing the maxi-
mum arrival rate the bucket is intended to model) and a

10

15

20

25

30

35

40

45

50

55

60

65

24

respective burst time window (indicative of a duration of the
modeled burst). The peak burst rate (pbr) parameter repre-
sents the maximum arrival rate to be supported using the PBB
and the peak burst window size (pbw) parameter is indicative
of the duration for which such an arrival rate should be sus-
tainable by the work target (assuming certain conditions, such
as no refill operations). The sustained burst rate (sbr) param-
eter represents the burst arrival rate (lower than pbr) that
should ideally be supported for a longer, sustained burst time
window (sbw). It is noted that while the respective time
windows may generally indicate the relative lengths of the
durations for which bursts are to be supported by the respec-
tive buckets in various embodiments, the actual durations for
which bursts at the respective rates are supported in practice
may not exactly match the time windows. Thus, in at least
some embodiments, the time windows may be said to be
indicative of targeted burst durations, but may not necessarily
equal actual burst durations. The maximum token popula-
tions of PBB 802 and SBB 804 are obtained in each case by
computing the product of the burst rate and the time window:
e.g., the maximum population of PBB is (pbr*pbw), and the
maximum population of SBB is (sbr*sbw). As shown by the
arrows labeled 856 and 858, the rate at which tokens are
actually consumed from each of the buckets of the compound
bucket 801 may be dependent on the arrival rate of work
requests (at least during burst mode, and in some embodi-
ments regardless of whether the work target is in burst mode
or normal mode). In at least some embodiments, tokens may
be consumed from both PBB 802 and SBB 804 when a work
request is accepted—that is, the rates at which tokens are
consumed from the PBB and the SBB may be identical.

In order to ensure that bursts of very high arrival rates are
not allowed to continue for too long, tokens may be consumed
from each of the buckets in the depicted embodiment to
accept a given work request for execution. To repeat an
example provided earlier: consider a scenario in which the
provisioned capacity (pr) is 100 operations/second (100 ops/
sec), the peak burst rate (pbr) is 1000 ops/sec, the peak burst
window size (pbw) is 6 seconds, the sustained burst rate (sbr)
is 200 ops/sec, and the sustained burst window size (sbw) is
60 seconds. The maximum population of PBB is thus 1000%*6,
or 6000 tokens, and the maximum population of SBB is set to
the product of 200*60, or 12000 tokens also. For a given
request to be accepted, one token each is required from PBB
and SBB in the example scenario. Consider a burst of work
requests B that begins at a time T at which both PBB and SBB
are full (PBB has 6000 tokens, SBB has 12000), and assume
PBB is refilled with 200 tokens every second, while SBB is
refilled with 100 tokens every second. If the burst B consists
of arrivals at 1000 requests/sec, B’s requests would be
accepted for between 7 and 8 seconds, as PBB’s population
would decrease at the rate of approximately 800 tokens (1000
consumed, 200 refilled) per second, while SBB’s population
would decrease at approximately 900 tokens per second
(1000 consumed, 100 refilled). After that time, the compound
bucket would not be able to sustain 1000 requests/second. If,
however, burst B consists of arrivals at 200 requests per
second, PBB would lose no net tokens (200 consumed, 200
refilled) each second, while SBB would lose 100 tokens every
second (200 consumed, 100 refilled). Thus, a smaller burst
rate (200 requests/sec) would be accommodated for a longer
time (120 seconds) than a sharp burst (7 to 8 seconds for a
burst of 1000 requests/sec) in this example scenario.

In practice, as noted earlier, in various embodiments the
arithmetic of this example use of a compound token bucket
801 may be more complicated due to various factors, such as
fluctuations in arrival rates, the work target re-entering nor-



US 9,218,221 B2

25

mal-mode, and/or consumption policies that require different
numbers of tokens for different types of requests.

In the depicted embodiment, for example, the refill rate for
PBB is a function of the provisioned capacity pr (f1(pr)), and
a function of the number “u” of unused tokens in the provi-
sioned-capacity bucket for the work target (f2(u)). Similarly,
the refill rate for SBB is a function of the provisioned capacity
(f3(pr)) and a function of u (f4(u)). In one implementation,
instead of being based on the absolute number of unused
tokens in the provisioned-capacity bucket, the refill rate of
either the PBB, the SBB or both may be based on the rate at
which unused tokens accumulate in the provisioned-capacity
bucket. In some embodiments, as in the example above, the
refill rate of the PBB may be set higher than the refill rate of
the SBB, while the maximum population of the PBB may be
set smaller than the maximum population of the SBB. Differ-
ent embodiments may employ any desired combination of
various kinds of functions f1, £2, f3 and 4.

In various embodiments, parameters (such as pbr, pbw, sbr
and sbw) and definitions of functions (f1, {2, {3 and f4) may
be tunable or configurable; e.g., the admission controller 180
may be configured to determine the values of the parameters
and the definitions of the functions from a configuration file or
via input from an administrator of the network-accessible
service. The admission controller may determine the param-
eter values and functions, compute or configure the maximum
populations, populate the buckets 802 and 804 as per the
parameters, and await incoming work requests. When a work
request is received during burst mode, it may be accepted for
execution (or rejected) based at least in part on the token
populations of one or both of PBB and SBB. If it is accepted,
one or more tokens may be consumed from either the PBB,
the SBB, or both, based on the respective consumption poli-
cies for the two buckets. PBB and SBB may be refilled based
on their respective refill rates at various points in time, as
described in further detail below with respect to FIG. 12. In at
least some embodiments, some of the functions fl1, £2, £3 and
f4 may be identity functions—e.g., it may be the case that f1
(pr)=pr. Some of the functions fl, {2, {3 and {4 may be
identical to some of the other functions in one embodiment,
e.g., there may be no requirement that the four functions
differ. In some embodiments, the number of unused tokens in
the provisioned capacity bucket “u” may not contribute to the
refill rate, e.g., it may be the case that the refill rates are
independent of the accumulation of unused tokens. In at least
some embodiments, PBB and/or SBB may be refilled in
accordance with their refill policies (and subject to their
maximum token population limits) during normal modes of
operations, so that tokens accumulate in PBB and/or SBB
even while the rate of work request arrivals is below the
threshold for burst-mode. Such refilling of burst-mode buck-
ets during normal mode may help to prepare the system to
handle future bursts, for example.

In some embodiments, the service implementing the work
target may wish to control peak and sustained burst-mode
admissions using respective sets of parameters for different
categories of work requests. For example, a different peak
burst rate (or sustained burst duration) may be appropriate for
reads than for writes, or a different peak burst rate (or sus-
tained burst duration) may be appropriate for each of several
priority-based categories of work requests. For some
extremely time-sensitive category of work requests, for
example, the service may wish to support higher peak bursts
than for other, less time-sensitive categories of work requests.
The admission controller 180 may implement a plurality of
compound buckets to handle such use cases in some embodi-
ments. FIG. 9 illustrates the use of peak-burst and sustained-

40

45

26

burst buckets dedicated to respective categories of work
operations, according to at least some embodiments.

As shown, in the depicted embodiment, the burst-mode
bucket set 125 may include, within its collection of local-
burst-limit buckets 604, a plurality of compound buckets 801,
including 801A, 801B and 801C, each dedicated to one or
more categories of work requests. For example, compound
bucket 801A may be used for admission control for requests
of category C1, compound bucket 801B may be used for
admission control for requests of category C2, and compound
bucket 801C may be used for admission control for requests
of category C3 and category C4. The definitions of the cat-
egories may be service-dependent in different embodi-
ments—e.g., one service may define categories based on the
types of operations performed (e.g., reads and writes could be
separate categories), another service may define categories
based on the amounts of resources consumed on average (e.g.,
short versus long operations), another service may define
categories based on client-specified priorities or service-as-
signed priorities, and so on.

Each of'the compound buckets 801 may include at least one
PBB 802 and at least one SBB 804, with respective (and
potentially distinct) sets of parameter settings for pbr, pbw,
sbr and sbw. For example, compound bucket 801A includes
PBB 802A and SBB 804A, compound bucket 801B com-
prises PBB 802B and SBB 804B, while compound bucket
804C includes PBBs 802C and 802D and a single SBB 804C.
In the case of compound bucket 801C, burst-mode admission
control of category C3 requests are managed using PBB 802C
and SBB 804C, while burst-mode admission control for cat-
egory C4 requests are handled using PBB 802D and the
shared SBB 804C. Thus, in this example scenario, when a
burst-mode work request of category C3 is received, the
populations of PBB 802C and SBB 804C are checked, and
when a burst-mode work request of category C4 is received,
the populations of PBB 802D and SBB 804C are checked. By
implementing separate compound buckets for different cat-
egories of work requests (or combinations of categories of
work requests), the service may be able to control burst-mode
behavior at a finer granularity that may be feasible if a single
compound bucket were used. The burst-mode bucket set 125
of FIG. 9 may also include one or more shared-resource
capacity buckets 606 (e.g., to ensure that capacity limits of
shared resources are considered during burst-mode admis-
sion control) and replication-management buckets 608 (e.g.,
to ensure that admission control decisions for operations such
as writes that have to be replicated are made based at least on
part on available throughput capacity at more than one rep-
lica).

Methods for Burst-Mode Admission Control

FIG. 10 is a flow diagram illustrating aspects of operations
that may be performed to implement a token-based admission
control mechanism for work requests at a network-accessible
service, according to at least some embodiments. As shown in
element 1001, a normal-mode throughput capacity limit
applicable to a work target may be determined, e.g., in
response to a provisioning request from a client. For example,
a client of a database service may request that a table capable
of supporting N read or write operations per second be cre-
ated, and the normal-mode throughput capacity limit for the
table may be set to N accordingly. The admission controller
180 of the service may determine various other parameters to
be used for a normal-mode bucket set and a burst-mode
bucket set (such as the number of buckets, initial token popu-
lations, refill rates and the like), for example based on default
settings or based on specifications requested by or negotiated
with the client. The buckets of the normal-mode bucket set



US 9,218,221 B2

27
120 and the burst-mode bucket set 125 may then be initial-
ized, e.g., instantiated and populated (element 1006).

The next work request may be received at the admission
controller (element 1010). The token population of at least
one normal-mode bucket may be checked. If the normal-
mode token population meets a threshold criterion T1 (as
detected in element 1014), one or more tokens may be con-
sumed from the normal-mode token bucket(s) (i.e., the token
population may be changed) and the work request may be
accepted for execution (element 1016). In one simple imple-
mentation, for example, a normal-mode token bucket may be
required to have at least one token in order to meet threshold
criterion T, and one token may be consumed per admitted
work request. In some embodiments, tokens may be con-
sumed from one or more burst-mode buckets (as well as from
one or more normal-mode buckets) when a work request is
accepted during normal mode of operation. In general, the
number of tokens consumed may depend on a combination of
factors in various embodiments, including a token consump-
tion policy in effect for the bucket(s), and/or on an estimate of
the amount of work that may be required to respond to the
work request. The admission controller 180 may be config-
ured to generate such an estimate in at least some embodi-
ments, based for example on details specified in the work
request by the client, accumulated history or statistics of the
amount of work similar requests actually required in the past,
and so on. In some embodiments, depending on the refill
policies in effect, various token buckets (e.g., either the nor-
mal-mode buckets, the burst-mode buckets, or both) may
optionally be refilled (i.e., tokens may be added to them in
accordance with their refill policies and maximum population
limits) at the time that an admission control decision is made.
As described below with respect to FIG. 12, the specific times
or events that lead to token bucket refills may differ in difter-
ent embodiments. If the normal-mode token population does
not meet the threshold criterion T1 (as also detected in ele-
ment 1014), the admission controller 180 may conclude that
the acceptance of the work request would result in burst-mode
operation of the work target, and that the token populations of
one or more burst-mode token buckets should accordingly be
determined.

The admission controller 180 may determine the token
population of at least one burst-mode token bucket in the
depicted embodiment. If the burst-mode token population
meets a threshold criterion T2 (as determined in element
1018), one or more tokens may be consumed from the burst-
mode bucket(s) and the work request may be accepted for
execution in burst mode (element 1020). In one simple imple-
mentation, for example, a burst-mode token bucket may be
required to have at least one token in order to meet threshold
criterion T2; thus, it may be the case in at least some imple-
mentations that the threshold token populations for both nor-
mal-mode and burst-mode buckets are the same. In general,
the number of tokens consumed from the burst-mode token
buckets may also depend on a combination of factors in
various embodiments, including a token consumption policy
in effect for the burst-mode bucket(s), and/or on an estimate
of'the amount of work that may be required to respond to the
work request. As in the case of the operations corresponding
to a normal-mode acceptance of the work request, one or
more buckets may optionally be refilled, based on their refill
policies and subject to their maximum token population lim-
its, when a burst-mode acceptance decision is made.

If the work request is accepted, either in normal mode
(element 1016) or in burst mode (element 1020), one or more
operations corresponding to the work request may be initiated
(element 1022). In some embodiments, when the operations

10

15

20

25

30

35

40

45

50

55

60

65

28

are completed, the admission controller 180 may asynchro-
nously compare the actual amount of work performed to an
estimate of work that was used to determine how many tokens
to consume (element 1024). If the original work estimate was
incorrect, the number of tokens in one or more buckets used
for admission control for the corresponding work request
may be adjusted accordingly. If the estimate was lower than
the actual work performed, a number of additional tokens
may be removed from the buckets that were used for admis-
sion control; the number of such additional tokens consumed
may be computed based on the difference between the esti-
mate of work and the actual work in some embodiments. If the
estimate was too high, some number of tokens may be
removed from the buckets used for admission control.

In the depicted embodiment, if the normal-mode token
bucket set population does not meet criterion T1, and the
burst-mode bucket set token population does not meet crite-
rion T2, the work request may be rejected, delayed or retried
(element 1080). In some embodiments, depending on the
refill policies in effect, one or more tokens may optionally be
added to either the normal-mode bucket(s), the burst-mode
bucket(s), or both, when the decision not to accept the work
request is made. After the admission control decision is made
(e.g., either the work request is accepted or rejected), the
admission controller may wait for the next work request, and
the operations corresponding to elements 1010 onward may
be repeated.

FIG. 11 is a flow diagram illustrating aspects of operations
that may be performed to implement a token-based admission
control mechanism for handling burst-mode operations using
a plurality of burst-mode token buckets, including a com-
pound bucket, ata network-accessible service, according to at
least some embodiments. As shown in element 1101, an
admission controller 180 may determine a number of param-
eters to be used for burst-mode admission control for short-
duration bursts at high arrival rates and longer-duration bursts
at lower arrival rates at a given work target. The parameter
determined may include, for example a peak burst rate (pbr)
to be supported, a peak burst window size (pbw) indicative of
a duration for which the peak burst rate is to be supported, a
sustained burst rate (sbr) (typically but not necessarily lower
than pbr), and a sustained burst window size (sbw) (typically
but not necessarily larger than pbw). Other parameters may
also be determined in at least some embodiments, such as
whether other buckets including for example shared-resource
capacity buckets and/or replication-management buckets are
to be set up, the initial population settings for various buckets,
and so on. At least some of the parameters may be config-
urable, e.g., in response to administrator input or auto-tuning
by the service, and one or more parameters may be read in via
configuration files in some implementations.

As shown in element 1106, a compound bucket comprising
at least one peak-burst bucket (PBB) and one sustained-burst
bucket (SBB) may be initialized, e.g., by instantiating and
populating the buckets based on parameter settings such as
the respective initial populations 306 of the buckets. In the
depicted embodiment, the maximum token population of a
PBB may be set to the product of pbr and pbw, and the
maximum token population of an SBB may be set to the
product of sbr and sbw. The refill rates for a PBB and/or an
SBB may be set based at least in part on the provisioned
throughput capacity of the work target. In some embodi-
ments, the refill rate for a PBB and/or an SBB may also be
based on the rate at which unused tokens accumulate in a
provisioned-capacity bucket or another normal-mode bucket
and/or the number of unused tokens in such buckets.



US 9,218,221 B2

29

The next burst-mode work request may be received (ele-
ment 1110) at the admission controller during burst mode
(that is, a work request may be received and the admission
controller may determine that the work target is in burst
mode, using the token population of a normal-mode bucket
such as a provisioned-capacity bucket, or using some other
indicator of the mode of operation of the work target). The
admission controller may determine the token populations of
the PBB and/or the SBB, and check whether enough tokens
are available to accept the work request, based on the con-
sumption policies and/or on an estimate of the amount of
work associated with the work request. If sufficient tokens are
present in the PBB and/or the SBB (as detected in element
1114), in the depicted embodiment, the admission controller
may determine whether the burst-mode token bucket set
includes other buckets whose populations also have to be
checked for the work request being considered. For example,
in some embodiments the burst-mode token bucket set may
include one or more shared-resource capacity buckets 606
and/or one or more replication-management buckets 608. If
additional burst-mode token buckets are being implemented,
and sufficient tokens are found in each of the remaining
burst-mode token buckets that are relevant to the work request
(as detected in element 1118), the appropriate number of
tokens may be consumed from each relevant bucket (e.g., in
accordance with the applicable consumption policies) and the
work request may be accepted for execution (element 1120).
It is noted that at least in some embodiments, some of the
additional burst-mode token buckets may be relevant only to
certain categories of requests—for example, the population
of a replication-management token bucket 608 may be
checked only for write request admission control in one
embodiment, and may not be checked when deciding whether
to accept a read request in such an embodiment. Thus, the
mere existence of a burst-mode token bucket may not imply
that that bucket has to be used for admission control for all
work requests received in some embodiments.

If sufficient tokens are not available for consumption in
either the compound token bucket pair (i.e., the PBB and/or
the SBB) (as detected in element 1114) or the relevant addi-
tional burst-mode token buckets (as detected in element
1118), the work request may be rejected, delayed or retried in
the depicted embodiment (element 1138). In some embodi-
ments, regardless of whether the work request was accepted
or rejected, one or more of the buckets used for admission
control (including, for example, buckets of a normal-mode
token bucket set 120 and/or buckets of a burst-mode bucket
set 125) may be refilled in accordance with the corresponding
refill policies after the admission control decision is made
(element 1140). After completing its operations correspond-
ing to a given work request, the admission controller 180 may
wait for the next work request to arrive, and operations cor-
responding to elements 1110 onwards may be repeated for the
next work request received in burst mode.

In different embodiments, token refill operations (i.e.,
operations in which tokens are added to a given token bucket)
may be performed in response to different events, or based on
different schedules. FIG. 12 is a flow diagram illustrating
aspects of token consumption, refill and transfer operations
that may be performed for admission control, according to at
least some embodiments. As shown in element 1201, an
admission controller may determine (e.g., by examining con-
figuration parameters) the types of triggering events that may
lead to bucket population changes. In some embodiments, the
arrival of a new work request and/or the completion of the
corresponding admission control decision may trigger token
population changes. In one embodiment, the expiration of a

10

15

20

25

30

35

40

45

50

55

60

65

30

time interval (e.g., N1 milliseconds or N2 seconds) since the
last population change at a bucket may trigger token popula-
tions. In yet other embodiments, combinations of time inter-
val expirations, work request arrivals and/or work request
admission control completions may trigger token population
changes. The occurrence of the next triggering event may be
detected (element 1206). The current populations of various
token buckets may be determined (element 1210), e.g.,
including the normal-mode buckets and burst-mode buckets.
In some embodiments, the reads and writes directed to the
various token buckets may all be performed within a single
atomic operation (similar to a database transaction), and in
such embodiments the atomic operation may begin with the
reading of the current token populations.

If the triggering event involves consumption or discarding
of'tokens (as detected in element 1214), the number of tokens
to be consumed or discarded may be determine for each
bucket (element 1217), and the bucket population(s) may be
adjusted accordingly in the depicted embodiment. Some
number of tokens may be consumed, as described above, for
each work request accepted in various embodiments. In some
embodiments, tokens may have a maximum lifetime, and
tokens that have remained unused for their maximum lifetime
may be discarded in accordance with a token staleness policy.

In at least some embodiments, tokens that remain unused in
one bucket may be “transferred” to another bucket—e.g.,
unused tokens in a provisioned-capacity bucket may be accu-
mulated or banked in a burst-mode bucket or buckets. It is
noted that in various embodiments, the “transfer” of tokens
comprises a logical operation in which, for example, if N
tokens are found unused in the provisioned capacity at a
particular point in time, N tokens are added to a burst-mode
bucket and the token population of the provisioned capacity
bucket is reduced by N. That is, in such embodiments, token
populations of the source and destination buckets may be
adjusted, and tokens may not actually be transmitted or trans-
ferred as such. In some embodiments, if N unused tokens are
found in a source bucket, N tokens may be added to each of a
plurality of destination buckets (e.g., a detection of a single
unused provisioned-capacity bucket token may result in an
increment to the populations of both a PBB and an SBB of a
compound token bucket 801). If such a transfer is to be
performed (as detected in element 1220), the population of
the source bucket(s) of the transfer may be reduced and the
population of the destination bucket(s) may be increased (ele-
ment 1223).

Tokens may be added to various buckets as needed, in
accordance with their respective refill policies (element
1227), and if an atomic operation or transaction was started in
operations corresponding to element 1210, the atomic opera-
tion may be terminated (element 1230). Such refill operations
may be performed in some embodiments, regardless of
whether tokens were consumed, discarded or transferred (i.e.,
both the positive and negative outcomes of the decisions
made in elements 1214 and 1220 may be followed by refill
operations in such embodiments). By performing the various
token population adjustments described within a single
atomic operation, the admission controller may ensure a
desired level of consistency across multiple bucket combina-
tions in such embodiments. The admission controller may
then await the next triggering event, and operations corre-
sponding to elements 1206 onwards may be repeated when
the next triggering event is detected.

As noted earlier, in at least some embodiments, the out-
come of an admission control decision, and/or the number of
tokens consumed in conjunction with the acceptance of a
work request, may be based at least in part on an estimate of



US 9,218,221 B2

31

the amount of work to be performed if the work request is
accepted. The estimate may in some cases turn out to be
inaccurate, and the admission controller 180 may be config-
ured to compensate for such estimation errors in some
embodiments, e.g., when the work for an accepted request is
completed and the discrepancy (if any) becomes known. FIG.
13 is a flow diagram illustrating aspects of operations that
may be performed to adjust token counts in one or more token
buckets after work operations corresponding to an admitted
work request complete, according to at least some embodi-
ments. As shown in element 1301, the admission controller
may receive the next indication of completion of work corre-
sponding to a work request. Such an indication may be pro-
vided, for example, asynchronously to the admission control-
ler by an administrative component of the service at which the
work target is implemented, and may include a metric of the
actual amount of work done for the request.

In the depicted embodiment, the admission controller 180
may determine whether the original estimate was too high or
too low with respect to the actual amount of work done. If
more work was done than estimated (as determined in ele-
ment 1304), the admission controller may determine a num-
ber of tokens to be deducted from one or more token buckets
in compensation for the underestimation (element 1308), and
adjust the bucket populations downwards accordingly. In
some cases, the adjustment may result in negative token
populations. Eventually, refill operations may restore token
populations to positive values, but while the token population
in a given bucket remains negative, new work requests for
which admission decisions are made based on the given buck-
et’s population may be rejected in at least some embodiments.

According to at least one embodiment, if the original work
estimate was too high (as determined in element 1312), the
admission controller 180 may optionally determine a number
of tokens to be added to one or more buckets, and set the
bucket populations accordingly (element 1316). In the
depicted embodiment, the admission controller may be con-
figured to maintain records of the accuracy of work estimates,
e.g., records of the estimate and the actual amount of work for
some or all accepted work requests over a period of time may
be maintained in a database or log. Accordingly, regardless of
whether the estimate was accurate or not, and regardless of
the direction of the error in those cases in which there was an
error (e.g., regardless of whether the estimate was too high or
too low), the admission controller may update records of
work estimation errors (element 1323). Such record keeping
may, for example, help improve the accuracy of the estimates
over time, as the admission controller may adapt its estima-
tion procedures based on the errors. In some embodiments,
such records may be kept for only a subset (e.g., a random
sample) of work requests, or may only be kept for those work
requests for which the magnitude of the error was above a
threshold. After updating the records, the admission control-
ler may wait to be informed about the next completion in the
depicted embodiment, and the operations corresponding to
elements 1301 onwards may be repeated. In some embodi-
ments, operations similar to those shown in FIG. 13 may be
performed for burst-mode buckets as well as for normal-
mode buckets. In at least one embodiment, retroactive adjust-
ments to bucket populations of the kinds illustrated in FIG. 13
may be performed at a low priority with respect to the admis-
sion control decisions for incoming client work requests, or as
background tasks.

Insome embodiments, the available throughput capacity of
a given work target may be affected by factors other than
incoming work requests. For example, certain kinds of
administrative operations, such as recovery from failure dur-

10

15

20

25

30

35

40

45

50

55

60

65

32

ing which the state of the work target is restored, or various
types of maintenance operations, may reduce the throughput
capacity available for client requests. FIG. 14 is a flow dia-
gram illustrating aspects of operations that may be performed
to modify burst-mode admission control parameters in
response to administrative events, according to at least some
embodiments. As shown in element 1401, the admission con-
troller 180 may receive an indication of a background or
administrative event (i.e., an event not resulting directly from
a client work request), such as a start of a recovery operation,
that may lead to a reduction in available throughput capacity
of one or more work targets. The admission controller may
then determine whether, in view of the event, bursting (e.g., at
a rate higher than the provisioned throughput capacity) is to
be disabled temporarily. If bursting is to be disabled (as deter-
mined in element 1404), only normal-mode admissions may
be supported until the event completes (element 1408).

Ifbursting is not to be disabled entirely (as also determined
in element 1404), the admission controller may be configured
in some embodiments to throttle the amount of bursting per-
mitted, e.g., by removing some tokens from one or more
buckets, or by adjusting refill rates downwards temporarily.
In such embodiments, the admission controller may deter-
mine the number of tokens to be deducted and/or the extent to
which the refill rates are to be lowered (element 1412). Popu-
lations of one or more buckets may be adjusted accordingly,
and/or the refill rates may be modified as determined. In some
cases, the population of a given bucket may fall below zero as
a result of the adjustments in at least one embodiment. The
admission controller may then await a notification that the
administrative or background event has completed (element
1415). After the event completes, the admission controller
may, in at least some embodiments, optionally undo some or
all of the changes that were made due to the event (element
1418)—e.g., populations of some buckets may be increased
and/or refill rates may be restored to their original values.
Burst-mode admission control with the original parameters
that were in use before the event notification was received
may be resumed in some embodiments. It is noted that in at
least some embodiments, normal-mode (as opposed to burst-
mode) admission control may continue unaffected while the
background or administrative events occur. In at least some
embodiments, during the administrative event, tokens may
continue to be added to the burst-mode buckets in accordance
with the (possibly modified) refill rates.

Over time, at least some of the parameters (such as refill
rates, maximum bucket populations and the like) governing
burst-mode admission control for a given work target may
need to be modified. FIG. 15 is a flow diagrams illustrating
aspects of operations that may be performed to adjust param-
eters used for token-based burst-mode admission control,
according to at least some embodiments. As shown in element
1501, the work request arrival rate, the acceptance rate and/or
the rejection rate for one or more work targets may be moni-
tored (e.g., by the admission controller, or by an optimization
engine affiliated with the service implementing the work tar-
get(s)) in the depicted embodiment. The collected data
regarding admissions, rejections and arrival rates may be
analyzed, e.g., together with resource usage metrics collected
from or associated with the work targets. If the analysis sug-
gests (as determined in element 1504) that parameters gov-
erning burst-mode admission control should be changed, the
admission controller or another component of the service
may determine an estimate of the costs of implementing
parameter changes (element 1508). If the analysis suggests
that no parameter changes are required, the monitoring opera-
tions of element 1501 may be resumed.



US 9,218,221 B2

33

In some cases the costs (or at least the portion of the costs
that may be billed to the clients) may be negligible or zero. In
such a scenario, the parameter changes may be made without
further interactions with the client on whose behalf a work
target was set up. In other cases, the client or clients may be
notified regarding the potential costs and the potential ben-
efits of the proposed parameter changes (element 1510). If a
client responds with a parameter change request for one or
more burst-mode parameters (element 1512), the parameter
changes may be implemented (element 1516). The admission
controller may resume monitoring arrival rates, acceptance
rates and rejection rates (element 1501). It is noted that in
some embodiments, admission control parameter changes
similar to those indicated in FIG. 15 may be introduced for
reasons not directly related to the analysis of monitored met-
rics indicated in elements 1501 and 1504. For example, in
some embodiments a client may request a change in the
provisioned throughput for a given work target, and admis-
sion control parameters (at least some of which may be func-
tions of the provisioned throughput) may be changed auto-
matically when the work target’s provisioned throughput
change request is accepted. In other embodiments, adminis-
trators of the service implementing the work target may
change at least some of the admission control parameters, at
least temporarily, for various other reasons such as mainte-
nance windows, upgrades, equipment changes, and the like.
Only a subset of the parameters may be accessible to clients in
at least some embodiments, thus allowing substantial admin-
istrative control over parameter changes.

Token Sharing Across Work Targets

As mentioned earlier, at least in some environments, work
requests may be distributed non-uniformly not only with
respect to time, but also with respect to the specific data
subsets targeted. FIG. 16 illustrates an example of non-uni-
form distribution of work requests with respect to different
subsets of data managed by a service, in combination with
non-uniformity of work request arrival rates, according to at
least some embodiments. A data object 2010A (which may
comprise, for example, a database table) comprises three
partitions labeled O1-P1, O1-P2 and O1-P3 in the depicted
embodiment, while another data object 2010B comprises par-
tition O2-P1. Each partition may be considered a distinct
work target with a respective provisioned capacity (e.g.,
expressed in work requests per second such as reads/second,
writes/second etc.), indicated by the objects labeled PC1 (the
provisioned capacity of partitions O1-P1, O1-P2, O1-P3 and
01-P4 is PC1, PC2, PC3 and PC4 respectively). Admission
control decisions regarding whether to accept or reject incom-
ing work requests are made separately at each of the partitions
in the depicted embodiment, using a respective set of token
buckets for each of the partitions. In some embodiments each
partition may have a respective set of normal-mode and burst-
mode token buckets, for example. The data objects 2010A
and 2010B may be owned by or allocated to a single client
entity, and may be used for a common purpose such as some
set of client applications; thus, from the perspective of the
owner of the data object, the four partitions may all be con-
sidered part of the same data set. Generally speaking, the four
partitions may differ from one another in size (i.e., in the
amount of data contained in each partition) and/or in provi-
sioned capacity.

The rate W at which work requests arrive at each of the
partitions or work targets during a time window TO-T1 is
shown in the graphs included in FIG. 16. As indicated by
arrows 2051, 2052, 2053 and 2054, the work request arrival
rate at partitions O1-P1, O1-P2, O1-P3 and O2-P1 is repre-
sented respectively by the curves W1, W2, W3 and W4. The

10

15

20

25

30

35

40

45

55

60

65

34

provisioned capacity for each of the partitions is also shown.
In the case of O1-P1, the work request arrival rate W1 is
consistently below the provisioned capacity PC1 during the
depicted time window. For O1-P2, arrival rate W2 exceeds the
provisioned capacity PC2 for much of the time period TO-T1;
thus, O1-P2 may have remained in burst-mode for most of the
illustrated time period. For O1-P3, the arrival rate is generally
close to the provisioned capacity PC3, and the arrival rate W4
for O2-P1 only briefly exceeds the provisioned capacity PC4.
As indicated by the work request rejection rate R2 at O1-P2,
some number of work requests may have been rejected at
01-P2, e.g., despite the use of burst-mode buckets for admis-
sion control.

As shown, the rates at which work requests targeted to the
different partitions arrive may differ substantially, even dur-
ing the same time interval. Some partitions (e.g., O1-P1) may
not even be using up all their normal-mode tokens, while
other partitions of the same object (or of a different object
with the same owner) may have such a high workload that
work requests have to be rejected despite the implementation
of one or more burst mode buckets. Accordingly, in the
depicted embodiment, the four partitions may be deemed
members of a token-sharing group 2002, and an iterative
token-sharing protocol may be implemented within the group
2002 to try to reduce the impact of the spatial non-uniformity
illustrated.

The token sharing protocol may result in some number or
all of the partitions or work targets (e.g., the admission con-
troller of each of the partitions) being triggered (e.g., at regu-
lar intervals, or after random amounts of time) to determine
whether an evaluation of a token-sharing iteration should be
attempted. That is, a given work target such as O1-P2 may
decide, based on any of various criteria, whether it is worth-
while, given its current bucket populations and recent work-
load, to try to find one or more partner work targets with
which tokens could be exchanged. If a decision is made to
evaluate token sharing, the work target may take on the role of
a token-sharing initiator for the current iteration of the pro-
tocol, and may identify one or more partner work targets
(members of the same token-sharing group) with which to
exchange token population information for one or more
bucket types. After an analysis of the token populations of the
initiator and a partner peer, a second decision may be made, as
to whether some number of tokens should be transferred in
one direction or the other between the initiator and the second
peer involved. Thus, for example, in FIG. 16, O1-P2 may be
the initiator, and may exchange token population information
regarding a burst-mode token bucket with O1-P1. [f O1-P2’s
burst-mode bucket has a much lower token count than
O1-P1’s corresponding burst-mode bucket, O1-P1 and
O1-P2 may mutually conclude that O1-P1 should transfer
some number N of tokens to O1-P2. Accordingly, N tokens
may be added to O1-P2’s bucket, while N tokens may be
deleted from O1-P1’s bucket. The addition of tokens may
help O1-P2 to sustain the higher workloads illustrated in FI1G.
16, while the reduction of tokens at O1-P1 may not have any
negative effects given the lower rate of requests at O1-P1.
Later, in subsequent iterations of the token sharing protocol,
if needed, some other peer work target may transfer tokens to
whichever work target happens to be heavily loaded; for
example, O1-P2 itself may later be in a position to transfer
tokens to any of the other partitions, while O1-P1 may end up
requesting tokens instead of providing them to other parti-
tions. The exact number of tokens to be logically transferred
may be determined by mutual consent among the work targets
involved in a given transfer in some embodiments, e.g., based



US 9,218,221 B2

35

on the difference in token populations, and/or based on an
amount of tokens requested by one of the work targets, and so
on.

In at least some embodiments, a “gossip protocol” may be
used for such token transfers. In such an embodiment, each
work target may be configured to act as an initiator after a
random amount of time, and use random selection to identify
a different work target for population exchange. Decisions as
to whether to participate in a token transfer (or even in a token
population exchange) may be made autonomously by each
work target in some embodiments. Membership in a token-
sharing group may be determined based on various factors in
different embodiments. For example, in some embodiments,
a given client C1 may indicate that its data objects O1, 02,
and O3 are to be considered members of one token-sharing
group G1, data objects O4 and OS5 are to be considered mem-
bers of another token-sharing group G2, while tokens of data
object O6 are not to be shared. In some embodiments the
network-accessible service may make at least some token-
sharing group membership decisions, while in other embodi-
ments token-sharing may be implemented for a given set of
work targets only in response to explicit requests from clients.
In some embodiments several different clients may decide to
share tokens as needed among their data objects—i.e., not all
the members of a token sharing group may have to be owned
by the same client entity (such as a business organization or an
individual user of the network-accessible service).

Example Token-Sharing Protocol Iterations

FIG. 17 illustrates example iterations of a token-sharing
protocol that may be implemented to alleviate effects of spa-
tial non-uniformity of data access, according to at least some
embodiments. Three peer work targets (e.g., table partitions)
Peer A, Peer B, and Peer C, are members of the same token-
sharing group in the illustrated example, and each has a single
token bucket (e.g., a burst-mode bucket, or a normal-mode
bucket) involved in token sharing. The token population of
the buckets of the three peers are shown over time as succes-
sive iterations of the protocol occur, with time increasing
from the top of the figure to the bottom. To simplify the
example, starting from iteration 1 of the protocol onwards,
token population changes resulting from refill rates, admis-
sions of work requests, or other factors are ignored, and only
those token population changes that result from implement-
ing the token-sharing protocol are included.

At the beginning of the time period illustrated in FI1G. 17,
each peer has 1000 tokens in its bucket. Due to incoming
work requests indicated by arrow 2150, at the time that the
first iteration of the protocol starts, Peer A has only 50 tokens,
while Peer B and Peer C still have 1000 tokens. In each
iteration, one of the peers initiates an exchange of token
population information with one other peer in the illustrated
example (multiple peer pairs may be involved in a given
iteration in some embodiments; only a simplified example of
the working of the protocol is provided in FIG. 17). The two
peers involved compare their token populations P1 and P2,
and (assuming for the moment that P1>P2), decide to transfer
(P1-P2)/2 tokens (rounded to an integer) from the peer with
more tokens to the peer with fewer tokens. In various imple-
mentations, the number of tokens transferred may be deter-
mined based on various different factors, e.g., a formula or
function other than (P1-P2)/2 may be used.

Thus, during iteration 1 in the illustrated example, Peer C
(with 1000 tokens) initiates a population exchange with Peer
A (50 tokens), and the token transfer size is determined as
(1000-50)/2=475. 475 tokens are thus added to Peer A’s
bucket, while 475 tokens are removed from Peer C’s bucket,

20

25

35

40

45

50

55

60

65

36

as indicated by the arrow from Peer C to Peer A. After the
transfer, both Peer A and Peer C have 525 tokens.

In iteration 2, token population information is exchanged
between Peer B (1000 tokens) acting as initiator, and Peer A
(525 tokens), resulting in a transfer of (1000-525)/2 or
approximately 237 tokens from Peer B to Peer A. As a result,
Peer A now has a total of 763 tokens, and Peer B has 762. (The
number of tokens at Peer A and B differs by one at the end of
iteration 2 because fractional tokens are not supported in the
depicted embodiment. In other embodiments, fractional
token counts may be supported, in which case both Peer A and
Peer B may end up with 762.5 tokens.)

In iteration 3, Peer A (763 tokens) and Peer C (525 tokens)
again exchange token populations, and Peer A transfers (763-
525)/2 or 119 tokens to Peer C. In iteration 4, Peer B (762
tokens) transfers 59 tokens to Peer C (644 tokens), and in
iteration 5, Peer B (703 tokens) transfers 29 tokens to Peer A
(644 tokens). Additional iterations (not shown) may result in
further transfers of tokens from peers that have more tokens to
peers that have fewer tokens. It is noted that the example
iterations illustrated in FIG. 17 are intended to illustrate high-
level characteristics of the particular token sharing protocol in
use in the depicted embodiment, not to cover protocol rules
necessarily applicable more generally or to other embodi-
ments.

Decisions regarding exactly when and under what circum-
stances a given work target should initiate token population
exchange, with which other work targets the population
exchange should be conducted, and what criteria should be
used to decide how many tokens (if any) should be trans-
ferred, may all be made based on different sets of criteria in
different embodiments. In some embodiments, for example,
if an admission controller or other service management com-
ponent at a given work target discovers that the rejection rate
at that work target is above a threshold, a new iteration of
token-sharing protocol may be initiated. In other embodi-
ments, if the token count in some set of buckets (e.g., in a
burst-mode bucket) falls below a threshold, a new iteration of
the token-sharing protocol may be initiated. In some imple-
mentations, as mentioned above, iterations of the protocol
may be initiated at random times from randomly-selected
work targets, and the work target with which the population
information is exchanged may also be selected at random. In
at least one embodiment, in order to reduce potential over-
head caused by implementing successive token-sharing pro-
tocol iterations too frequently, a throttling policy for token
sharing may be enforced, so that for example the maximum
number of tokens that a given work target can transfer to,
and/or receive from, any other work target within X seconds
or minutes is restricted to some number Tmax. Other throt-
tling policies may be applied in other implementations, such
as restricting back-and-forth token transfers between the
same pair of work targets to some maximum rate—e.g., work
targets WT1 and WT2 may be permitted to participate in a
maximum of K token transfers per every fifteen minutes. In
some cases, a new token transfer at time Tk may not be
permitted between a pair of work targets WT'1 and WT2 if a
different token transtfer occurred within a specified time win-
dow prior to Tk.

In the example shown in FIG. 17, the number of tokens
transferred is simply computed as half the difference between
the peer with the higher token population and the peer with
the lower token population. In other embodiments, transfer
sizes may be determined based on other factors—e.g., each
work target may have a minimum token population with
respect to token transfers (so that if the minimum level is
reached, no tokens may be transferred even if another work



US 9,218,221 B2

37

target has a lower token count), or the number of tokens
transferred may be based at least in part on the recent work-
load level at the work target, or on the provisioned capacity at
the work target. The donation of tokens to other work targets
may be voluntary in at least some embodiments—e.g., even if
a given work target WT1 has far more tokens than one of its
peers WT2, WT1 may not be obliged to transfer any tokens to
WT2 (for example, a heavy burst of work requests may be
anticipated in the near future at WT1, so transferring tokens to
other work targets may not be appropriate).

Token-Sharing in Environments Supporting Data Replication
Roles

In some embodiments, as mentioned earlier, a database
service or a storage service may store multiple replicas of a
client’s data, and different replicas may have different roles
with respect to admission control of work requests—e.g., in
environments where work requests may include reads and
writes, some replicas may be responsible for admission con-
trol for writes as well as reads, while other replicas may only
handle reads. In such embodiments, the group of peer work
targets among which token-sharing protocols are imple-
mented may be determined at least in part by the replica roles.
FIG. 18 illustrates examples of token sharing peer groups that
may be established in an environment in which data partitions
are replicated, according to at least some embodiments.

Data objects 2201 (e.g., database tables or storage vol-
umes), such as objects 2201A, 2201B, 2201C and 2201D,
may each comprise one or more logical partitions, and corre-
sponding to each of the logical partitions, two or more physi-
cal replicas may be stored in accordance with a data durability
requirement of the service. One of the physical replicas may
be termed a “master” replica (or, simply, the master) in the
depicted embodiment, and the remaining replicas may be
termed “slave” replicas (or, simply, slaves). The master rep-
lica may be responsible for admission control for work
requests that include writes, while read requests may be
accepted for execution at any of the replicas (the master as
well as the slave replica(s)) in the depicted embodiment.
Thus, a write request directed to a given logical partition may
be directed to the master replica, where a decision as to
whether to accept or reject the write may be made. If the write
is accepted, the corresponding data modifications may first be
performed at the master, and then propagated to the slaves.
Read requests may be directed to any of the replicas in the
embodiment shown in FIG. 18 (and as a result, some of the
data read at a slave may be slightly out-of-date with respect to
the most recent write requests, whose changes may not have
been replicated at the slave). Each physical replica may have
an associated set of token buckets for admission control—
e.g., amaster bucket set for master replicas and a slave bucket
set for each slave replica. The “master” and “slave” roles
assigned to a given physical replica may change over time—
e.g., dueto afailure or loss of connectivity to a master, a slave
may be promoted to a master role. In other embodiments, the
responsibilities associated with master and slave roles may
differ—e.g., in some embodiments, admission control for
reads may also be performed at the master.

In the embodiment shown in FIG. 18, data object 2201A
has logical partitions O1-P1, O1-P2, and O1-P3. Master rep-
licas for a given logical partition Ox-Py are labeled Ox-Py-M,
while the kth slave replica is labeled Ox-Py-Sk. The master
replica for O1-P1, labeled O1-P1-M, is located on a storage
device 2202A attached to a storage node 2210A of the ser-
vice. A slave replica for O1-P1, labeled O1-P1-S1, is located
at storage device 2202B at storage node 2210B. Data object
2201B has logical partitions O2-P1 and O2-P2, data object
2201C has logical partitions O3-P1 and O3-P2, while data

5

10

15

20

25

30

35

40

45

50

55

60

65

38

object 2201D has n logical partitions O4-P1 . . . O4-Pn. In
general, for data durability, multiple replicas of the same
logical partitions may not be stored on the same storage
device or the same storage node in the depicted embodiment.
Except for such durability-derived constraints, replicas may
generally be stored on any (e.g., randomly selected) storage
device or storage node that has sufficient space available in
the depicted embodiment. For example, storage device
2202A also includes slave replica O2-P1-S1 of logical parti-
tion O2-P1 of data object 2201B and slave replica O3-P1-S2
oflogical partition O3-P1 of data object 2201C, while storage
device 2202B includes slave replica O4-P2-S2 and master
replica O2-P1-M, and storage device 2202C, also at storage
node 2210B, includes master replica O1-P3-M and slave
replicas O2-P1-S1 and O4-P1-S1. (Due to space limitations,
only some of the replicas of some of the partitions of data
objects 2201A-2201D are shown in FIG. 18).

Each physical replica, whether a slave or a master, has a
respective set of token buckets for admission control of work
requests directed to the replica. For example, master replicas
0O1-P1-M, 02-P1-M and O1-P3-M have respective master
bucket sets 2252 A, 22528 and 2252C. Slaves O2-P1-S1 and
03-P1-82 at storage device 2202A have slave bucket sets
2272A and 2272B, while slaves O1-P1-S1 and 04-P2-S2
have slave bucket sets 2272C and 2272D, and slaves O2-P2-
S1 and 04-P1-S1 have slave bucket sets 2272E and 2272F.
Each bucket set may comprise one or more token buckets
similar to those described earlier, including for example one
or more normal-mode token buckets and/or burst-mode token
buckets (including, in some cases, compound burst-mode
token buckets). In some embodiments in which separate
token buckets are configured for reads and writes (e.g., as
illustrated in FIG. 5), and slaves do not participate in admis-
sion control for writes, slave bucket sets 2272 may comprise
only read token buckets, while master bucket sets 2252 may
include both read and write buckets.

Since the master and slave roles may correspond to difter-
ent admission control responsibilities, in the depicted
embodiment, a given master replica may be permitted to
participate in a token-sharing protocol only with other mas-
ters, and similarly, a slave replica may only share tokens with
other slaves. Accordingly, the replicas illustrated in FIG. 18
may be divided into two token-sharing peer groups 2242A
and 2242B. Token-sharing peer group 2242A may comprise
the master replicas of some set of data objects, such as masters
01-P1-M, O2-P1-M and O1-P3-M. Other master replicas of
the objects 2201 A-2201D, not shown in FIG. 18, may also be
included in group 2242A. Token-sharing peer group 2242B
may comprise slaves 02-P1-S1, 03-P1-S2, O1-P1-S1,
04-P2-82, 02-P2-S1 and 04-P1-S1 (as well as other slave
replicas not shown in FIG. 18). Thus, in the depicted embodi-
ment, master replicas may exchange token population infor-
mation with, and transfer tokens to/from, other masters, and
slave replicas may exchange token populations and/or tokens
with other slaves. Such restrictions may reflect an assumption
about the value of a token at a master relative to the value of
atokenat a slave, for example—e.g., an assumption that since
masters have more admission control responsibilities than
slaves, losing or gaining a token at a master may have a
different impact than losing or gaining a token at a slave. In
some embodiments, such role-based restrictions may not be
enforced, so that masters may also or instead transfer tokens
to slaves and vice versa.

Token-Sharing for Secondary Indexes

In some embodiments, token-based admission control may
be implemented for non-relational database services, such as
any of the various types of “NoSQL” services that have



US 9,218,221 B2

39

recently gained in popularity. In many such database services,
different rows of a given table may in general have different
sets of columns. Thus, at least in some cases, each row may be
considered a (primary-key, value) pair, where the primary-
key component is used for a primary index, while the value
component may include some arbitrary collection of values
corresponding to respective columns. In many cases, clients
may wish to utilize secondary indexes on their non-relational
data, i.e., indexes on columns other than the primary key.
Such secondary indexes may be implemented using derived
tables in some embodiments—e.g., at least some subset of the
data corresponding to a given table (which may be referred to
as a base table) may also be organized as a derived table to
support fast access via a secondary index. In some cases, not
all the columns of the base table may be replicated in the
derived table. The base table and the derived tables used for
one or more secondary indexes may each comprise one or
more logical and/or physical partitions with respective token
buckets for admission control in some embodiments. In some
embodiments, the partitions of the base table and the parti-
tions of the derived tables may participate as peers in a token-
sharing protocol similar to the protocols described above. In
some implementations, separate secondary indexes (and
separate derived tables) may be set up for respective subsets
(e.g., respective partitions) of the base table. In other imple-
mentations, a single derived table may be set up for a given
secondary index, containing data corresponding to all the
partitions of the base table; in the latter scenario, the second-
ary index may be termed a “global secondary index” or GSI,
since data corresponding to the whole base table (rather than
a subset of the base table) may be accessed.

FIG. 19 illustrates an example of the use of token sharing at
a database service to support workload management for sec-
ondary indexes, according to at least some embodiments. In
the depicted embodiment, base table 2310 comprises N par-
titions BT-P1, BT-P2, . . ., BT-PN. A derived table 2320 has
been set up to support a GSI on the base table, and the derived
table includes partitions GSIT-P1, GSIT-P2, ..., GSIT-PQ. In
some implementations, the partitions of the base table 2310
and/or the derived table 2320 may be replicated for data
durability, although replicas are not shown in FIG. 19. In
general, a different derived table may be created for each GSI
set up for a given base table. Each partition of the base table,
and each partition of the derived table, has a respective pro-
visioned capacity, as indicated by the elements labeled
BTPC1, BTPC2, . . . for the base table partitions and the
elements labeled SIPC1, SIPC2, . . . for the derived table.
Admission control decisions may be made independently for
each of the partitions of either table in the depicted embodi-
ment, and each partition may have a set of token buckets (such
as one or more normal-mode and/or burst-mode token buck-
ets). In some cases different types of buckets may be imple-
mented for the base table than for the derived table—e.g., the
base table may use a compound burst-mode bucket, while the
derived table may use a straightforward (non-compound)
burst-mode bucket.

In at least some embodiments, updates corresponding to
client write requests may be made at the base table first, and
then propagated to the derived table. For example, update
send buffers may be established for each of the base table
partitions, such as update send buffer 2325A for partition
BT-P1, update send buffer 2325B for partition BT-P2, update
send buffer 2325C for partition BT-P3, and update send buffer
2325N for partition BT-PN. Updates made at the base table
partitions may be queued for propagation (as indicated by
arrow 2350) in the corresponding send buffers, and eventu-
ally received at corresponding update receive buffers 2330

10

15

20

25

30

35

40

45

50

55

60

65

40
(e.g., receive buffers 2330A, 23308, 2330C and 2330Q)) at
the derived table partitions before being applied to the data of
the derived table. In general, there may not be a one-to-one
mapping between the partitions of the base table and the
derived table—e.g., a given update at partition BT-P1 may
require data to be modified at a derived table partition GSIT-

P3, while a different update at partition BT-P1 may resultina

modification to GSIT-P1. In contrast to writes, which are first

applied to the base table and then to the derived table, reads
may be satisfied from the derived table without referring to
the base table, depending on the nature of the read request—

e.g., aread query that is framed in terms of the keys of the GSI

may be responded to using the derived table, while a read

query based on other keys may be responded to using either
the base table or the derived table.

Provisioned capacities may be assigned to the base table
and the derived table independently of each other in at least
some embodiments. Thus, in one embodiment, when a client
requests a table creation, the client may specity the provi-
sioned capacity for the base table, and provide an indication
of'the GSI(s) to be established, using the logical equivalent of
a statement similar to the following:

Create table T1 with hash-key kl, reads-per-second=12,
writes-per-second=8, Global index G1 with hash-key k2;
In this example, a base table T1 is created with a primary

key (in this case a hash-key) k1, with a provisioned through-

put of 12 reads per second and 8 writes per second. The client
also indicates that a global secondary index G1 be created
with a different hash-key k2, but does not specity the provi-
sioned throughput for the GSI. In such a scenario, the data-
base service may assign the provisioned throughput to the
base table partitions based on the total provisioned through-
put for the base table specified by the client., and may have to
assign the provisioned throughput for the derived table’s par-
titions (used for the GSI) without further client interaction.

The database service may use any of a number of different

approaches to determine the derived table partitions’ provi-

sioned capacity in various embodiments.

Assume, for the purposes of this example, that two parti-
tions BT-P1 and BT-P2 are to be set up for the base table, and
two partitions GSIT-P1 and GSIT-P2 are to be set up for the
derived table to support index G1. In one approach, the total
provisioned capacity indicated by the client may be assumed
to represent the number of reads and writes to be handled for
both the base table as well as the derived table taken together.
In this case, the 12 reads/second may be divided into 3 reads/
second at each of BT-P1, BTR-P2, GSIT-P1, and GSIT-P2,
and the 8 writes/second may similarly be divided into 2
writes/second at each of the four partitions. In another
approach, the database service may assume that the client’s
requested provisioned capacity applies only to the base table,
and that additional reads and writes are to be provisioned for
the derived table’s partitions. In this second approach, BT-P1
and BT-P2 may each be assigned provisioned capacities of 6
reads/second and 4 writes/second, while GSIT-P1 and GSIT-
P2 may each be assigned provisioned capacities of “v” reads/
second and “w” writes/second, where v and w may be esti-
mated based on some heuristics or based on previous
experience with similar GSIs.

In some embodiments, clients may be enabled to specify
(and pay for) provisioned capacities explicitly for GSIs, e.g.,
a client may specify the logical equivalent of the following
when requesting that a table be created:

Create table T2 with hash-key kl, reads-per-second=12,
writes-per-second=8, Global index G2 with hash-key k,
reads-per-second=6, writes-per-second=6;



US 9,218,221 B2

41

In this example, the client indicates the desired provisioned
read and write rates for the GSI separately from the provi-
sioned read and write rates for the base table, and the database
service may assign the provisioned capacities accordingly to
the partitions of the base table and the derived table. It is noted
that in some implementations, index keys other than hash
keys (e.g., range keys) may also or instead be specified. In at
least one embodiment, GSIs may be created for pre-existing
tables, e.g., clients may not need to decide on the set of GSIs
they need at the time the base table is created.

Over time, the workload to the partitions of the base table
and the partitions of the derived tables may vary substantially,
and during a given time interval, the read and/or write
requests may be distributed non-uniformly across the parti-
tions of both types of tables. In order to reduce negative
impacts (such as work request rejections) of spatial non-
uniformity, all the partitions of base table 2310 and derived
table 2320 have been made members of a single token-shar-
ing peer group 2342. Each of the partitions BT-Px and GSIT-
Py may thus participate in the exchange of token populations
for their respective token buckets, and, based on mutual
agreement, in token transfers as described earlier.

Example Token-Sharing Message Sequences

FIG. 204-204 illustrate examples of message sequence
flows between participants in a token-sharing protocol,
according to at least some embodiments. As described earlier,
a token sharing protocol may involve one work target (e.g., a
table partition) initiating an exchange of token population
information with a second work target, followed potentially
by a logical transfer of tokens (i.e., changes in token popula-
tions at both work targets without any token objects being
transferred) after mutual agreement. The work target that
initiates the population information exchange may be termed
the “token-sharing initiator peer” or TSIP, while the recipient
of the population information may be termed the “token-
sharing partner peer” or TSPP herein. In the embodiment
shown in FIG. 20a-20d, at least three types of messages may
flow between a TSIP 2402 and a TSPP 2405: a token sharing
request message TSReq, a token sharing acceptance message
TSAcc, and a token sharing rejection message TSRej.

In the interaction depicted in FIG. 20a, the TSIP 2402
sends a TSReq message 2410 to a selected TSPP 2405. The
TSReq message 2410 may comprise an indication of the
token population of a particular bucket (e.g., a burst-mode
bucket) at the TSIP 2402. In some implementations, the
TSReq message may also include an indication of the addi-
tional number of tokens that the TSIP wishes to obtain, or in
some cases an indication of the number of tokens the TSIP is
willing to provide to the TSPP 2405. In response, the TSPP
2405 sends an acceptance message TSAcc 2420. The TSAcc
message 2420 may indicate, for example, the token popula-
tion at the TSPP, and/or the number of tokens the TSPP 2405
is willing to provide to the TSIP 2402 (or the number of
tokens the TSPP is willing to accept from the TSIP). After the
TSReq and TSacc have been exchanged, both the TSIP and
the TSPP may modify their token populations in accordance
with the mutually-agreed-upon transfer in the depicted
embodiment.

In the interaction depicted in FIG. 205, the TSIP 2402
sends a similar TSReq message 420, but in this case, the TSPP
2405 sends a rejection message TSRej 2430 back to the TSIP,
indicating that the proposed token transfer is not acceptable
by the TSPP. Accordingly, depending on the needs of the
TSIP 2402, the TSIP may try to initiate a token exchange with
some other partner peer, or may wait for some time before
initiating another iteration of the token sharing protocol. In
some implementations, an absence of a reply from the TSPP

10

20

35

40

45

42

to a TSReq message within a particular time window may be
deemed the equivalent of a rejection. In one implementation,
the TSIP 2402 may resend a TSReq message a few times
before assuming that the TSPP 2405 is not available for the
requested token transfer.

In FIG. 20c¢, the TSPP 2402 sends its TSReq 2410A, com-
prising the same type of information (e.g., the TSPP’s token
population, and optionally an indication of the nature or size
of a requested token transfer) to the TSPP 2405. The TSPP
2405 receives the request, and decides to make a counter-
offer, i.e., a request for a different transfer than was indicated
in TSReq 2410A. Accordingly, TSPP 2405 sends back a
different TSReq 2410B, indicating the TSPP’s token popula-
tion, and an indication of a direction and quantity of tokens
that the TSPP would like to be transferred. The TSIP 2402
may receive the TSReq 2410A, and send a TSAcc message
2420 to accept the modified transfer, and the two sides may
adjust their token populations accordingly.

InFIG. 20d, TSPP 2402 sends its TSReq 2410A, and TSPP
sends back its own TSReq 2410B in a manner similar to that
shown in FIG. 20c. In this case, TSIP 2402 rejects TSReq
2410B, and sends a rejection message TSRej 2430 to inform
TSPP 2405 of the rejection.

It is noted that in different embodiments, variations and
enhancements of the types of interactions shown in FIG.
20a-20d may be implemented. For example, in some embodi-
ments, an additional confirmation of an acceptance may be
sent back after a TSAcc message is sent. In one implementa-
tion, when sending a TSRej rejection message, the sender
may provide hints to the receiver regarding which other work
targets may be good candidates for the rejected token transfer
(e.g., based on recent communications with other work tar-
gets). In another implementation, a TSIP may not indicate a
desired number of tokens to be transferred, or a preferred
direction of transfer, in its TSReq message; instead, only an
indication of the token population at the TSIP may be pro-
vided, and it may be left to the TSPP to determine whether a
transfer in either direction is appropriate. In such a scenario,
if the TSPP decides that no transfer is appropriate, it may
simply send a rejection message or ignore the TSReq entirely;
and if the TSPP decides that a token transfer is appropriate, it
may send its own TSReq back to the TSIP as in FIG. 20c¢ or
20d. In some embodiments, a TSIP may be configured to send
a'TSReq message only if it needs additional tokens, and not if
it is able to spare some of its own tokens. In other embodi-
ments, the TSIP may send a TSReq message whether it needs
more tokens or is willing to transfer tokens to others.
Methods for Token Sharing

FIG. 21 is a flow diagram illustrating aspects of operations
that may be performed to support token sharing for burst-
mode operations, according to at least some embodiments. As
shown in element 2501, token buckets, including normal-
mode and burst-mode buckets, may be configured for admis-
sion control at each of a number of work targets (such as table
partitions) that are designated as members of a token sharing
group. Membership within a token sharing group may be
implicit in some embodiments, e.g., by default, all the parti-
tions of a given table may be considered members of a token
sharing group. Membership may be based on ownership of
storage objects in some embodiments—e.g., all the partitions
of all the tables owned by a particular client (as well as any
derived tables used for secondary indexes) may be deemed
members of a token-sharing group. In other embodiments,
clients may be able to indicate which specific work targets
they wish to include in a given token sharing group. Several
different cooperating client entities may decide to include
their respective work targets in a token sharing group in some



US 9,218,221 B2

43

embodiments. As described above in conjunction with the
description of FIG. 18, in some embodiments in which data
objects are replicated and different replicas are assigned dif-
ferent roles with respect to admission control (such as master
and slave roles), a given token sharing group may contain
replicas corresponding to one role and not the other. Token
sharing may be permitted only for token buckets of a particu-
lar type in some embodiments—e.g., only burst-mode buck-
ets may participate in token sharing, or only read token buck-
ets may participate in token sharing in some implementations.

The token sharing protocol may be implemented in itera-
tions in some embodiments, in a manner similar to that shown
in FIG. 17. A given work target W1 may perform its typical
operations (unrelated to token sharing) for a while, such as
making admission control decisions for incoming work
requests and executing the work corresponding to accepted
work requests. An iteration of the token sharing protocol may
betriggered at W1 as aresult of one or more criteria being met
(element 2504), such as some amount of time having elapsed
since the previous iteration, the determination that the num-
ber of tokens in one or more buckets at W1 has reached a
threshold level, and/or the determination that a rejection rate
for work requests at W1 has reached a threshold level.

During an iteration of the protocol in the depicted embodi-
ment, W1 may successively identify one or more partner peer
work targets for possible token transfers, and transmit one or
more token sharing messages to one partner at a time (e.g., in
a manner similar to that shown in FIG. 20). The token popu-
lations of one or more buckets (e.g., a burst-mode bucket) of
W1 and the partner may be compared, and a determination as
to whether some number of tokens are to be transferred
between W1 and the partner may be reached by mutual con-
sent of the two work targets. Thus, as shown in element 2507,
W1 may select some work target that is amember of the token
sharing group as the next partner W2 to be contacted for a
possible token transfer. Different techniques may be used to
identify which specific work target should be selected in
various embodiments. For example, in some embodiments, a
gossip protocol may be used and the partners may be selected
at random. In other embodiments, a more deterministic selec-
tion technique may be used, such as choosing the particular
work target that has not been contacted by W1 for the longest
time among the work targets of the token sharing group
(which may be termed a “least-recently-contacted”
approach), or a round-robin approach may be used. In one
implementation, a given work target may be selectable as a
partner only if no token transfers between the initiator and the
partner have occurred during a specified time window.

One or more messages may be exchanged with the partner
peer (element 2510) to compare token populations of the
bucket(s) that could potentially be affected by a token trans-
fer. In some embodiments, instead of or in addition to the
token population information, the message(s) may indicate a
requested number of tokens, or a range of the number of
tokens that would be acceptable for a transfer, as well as the
desired direction of token transfer. In at least one embodi-
ment, acomparison of token populations may not be required;
instead, for example, a decision as to whether to offer some
number of tokens to the partner peer, or to request some
number of tokens from the partner peer, may be made based
on the number of tokens at the initiator peer W1, or based on
other criteria or thresholds. Similarly, in such an embodiment,
the response from the partner peer may also be generated
without a comparison of token counts. One or more criteria
may be used, at either the initiator peer W1 or the partner peer
W2, to determine whether a token transfer should be agreed
to, and if so, how many tokens should be transferred (i.e., the

10

15

20

25

30

35

40

45

50

55

60

65

44

transfer size), and in which direction (the transfer direction).
For example, in some embodiments, a given work target such
as W2 may not be willing to part with tokens if W2’s token
bucket population is below some threshold, even if W2 has
more tokens than W1; or, W2 may not be willing to donate
tokens to W1 if W2 expects a burst of work requests in the
near future based on past trends. In some embodiments, work
targets may be configured to share tokens based purely on the
difference in token populations—e.g., if W2 has more tokens
than W1, W2 may be obliged to share some of the tokens (e.g.,
half'the difference between the token populations as shown in
FIG. 17) with W1. In at least one embodiment, in order to
avoid “thrashing” behavior (e.g., rapid transfers back and
forth between a given pair of work targets), the number of
transfers (or the number of tokens transferred) between a
given pair of work targets may not be permitted beyond a
specified rate. The transfer size may be determined by mutual
consent between the initiating peer and the partner peer. In
some embodiments, token transfers may only be imple-
mented if one of the peers is willing to spare at least T tokens,
where T may be a configurable parameter of the protocol;
thus, it may not be considered worthwhile to transfer a very
small number of tokens.

If the token transfer criteria are met (as determined in
element 2514), a number of tokens equal to the determined
transfer size may be added to one or more buckets at one of the
work targets (e.g., either the initiator or the partner), and an
equal number of tokens may be removed from a correspond-
ing set of one or more buckets at the other work target (ele-
ment 2518). In most cases, tokens may be transferred from the
peer with the greater token population to the peer with the
smaller token population, although transfers in the other
direction may also be permitted in at least some embodiments
(for example, if W1 has fewer tokens than W2, but W2
requests tokens in anticipation of a large burst that is
expected, W1 may transfer tokens to W2 in one example
scenario).

Whether a token transfer was agreed to or not, in the
depicted embodiment, a decision may be made as to whether
other partner work targets are to be contacted. For example, in
some embodiments, W1 may wish to acquire N tokens, but
only M tokens (where M<N) may have been available from
W2, so W1 may wish to attempt to obtain additional tokens
from other partners. In some embodiments, a limit may be
enforced as to the number of different partners that may be
contacted by a given initiator such as W1 in a given time
period. If additional peers are to be contacted (as determined
in element 2522), the next partner may be identified, e.g.,
using a similar approach as described above with respect to
element 2507, and the operations corresponding to elements
2510, 2514, and 2518 may be performed with the next part-
ner.

If no additional partners are to be contacted (as also deter-
mined in element 2522), e.g., if the initiator was able to obtain
(or donate) a desired number of tokens, the iteration of the
token-sharing protocol may be deemed complete (element
2526). The initiator may resume its usual operations until the
next iteration is triggered (element 2504), at which point the
operations corresponding to elements 2507 onwards may be
repeated in the depicted embodiment.

Distribution of Tokens Representing Excess Capacity of
Shared Resources

As described earlier, in some embodiments, several work
targets of a given network-accessible service, such as several
database table partitions managed by a database service, may
be configured to use one or more shared resources (e.g., a disk
drive or other storage device) to accomplish the work per-



US 9,218,221 B2

45

formed in response to client requests. In general, when
assigning work targets to a shared resource, the service may
ensure that the throughput limit sustainable by any of the
shared resources exceeds the sum of the provisioned capaci-
ties of the work targets. In some embodiments in which token
bucket populations represent throughput capacities, this may
result in a scenario in which, even though the shared resource
is capable of handling additional work requests, one or more
of the work targets is unable to accept incoming work
requests (e.g., despite the use of burst-mode buckets).
Accordingly, in at least some embodiments tokens represent-
ing the excess throughput capacity of the shared resource(s)
may be distributed among the work targets in an equitable
manner as described below. FIG. 22 illustrates an example of
a shared resource with a throughput limit greater than the
combined provisioned capacities of work targets that share
the resource, according to at least some embodiments.

In the embodiment depicted in FIG. 22, resource 3044 is
shared by at least the four work targets 3001A,3001B,3001C
and 3001D. The work targets may be termed members of
resource sharing group 3070 with respect to resource 3044.
Shared resource 3044 has a throughput limit SRTL 3020,
which exceeds the sum of the provisioned capacities of the
work targets, (PC14PC2+PC3+PC4). The graphs in the lower
portion of FIG. 22 illustrate the respective work request
arrival rates at the four work targets during a time interval
TO-T1, as indicated by the arrows 3051, 3052, 3053 and 3054.
As shown, the work request arrival rate W1 at work target
3001A is lower than the provisioned capacity PC1 during the
interval TO-T1. The work request arrival rate W2 at work
target 3001B exceeds the provisioned throughput PC2 for
much of the interval, and as a result some number of work
requests get rejected, as indicated by rejection rate R2. Such
rejections may occur even if burst-mode token buckets of the
kinds described above are used at each of the work targets.
Work target 3001C happens to receive no work requests at all,
as indicated by the zero arrival rate W3. At work target W4,
the arrival rate W4 exceeds the provisioned capacity for some
parts of the time interval TO-T1, but there are no rejections
(e.g., as a result of using burst-mode token buckets).

Token distributor 3080 may be configured to determine
whether any additional tokens (i.e., tokens beyond the num-
ber already generated based on bucket refill rates) represent-
ing the unused throughput capacity of the shared resource
3044 should be distributed among the work targets 3001 of
the resource sharing group for a given time period in some
embodiments. In addition, token distributor 3080 may be
responsible for determining how many such tokens should be
provided to each of the work targets in the illustrated embodi-
ment. The “excess” tokens may be created as needed in some
embodiments, while in other embodiments a bucket associ-
ated with the shared resource may be configured to include
tokens representing the throughput capacity of the shared
object, and the excess tokens may be distributed from such a
bucket.

Token distributor 3080 may implement an equitable distri-
bution policy taking into account such factors as the respec-
tive provisioned capacities of the work targets, as well as
some metrics of recent activity (i.e., work request arrival
rates) at the work targets 3001. The respective provisioned
capacities may be included as factors in the distribution algo-
rithm because, at least in some embodiments, the amount that
a given client is charged for access to a particular work target
is a function of the provisioned capacity of that work target.
Accordingly, at least to some extent, the service at which the
work targets are managed may attempt to distribute assets or
benefits, such as the excess tokens associated with the unused

10

15

20

25

30

35

40

45

50

55

60

65

46

capacity of the shared resource, in proportion to the provi-
sioned capacities of the members of the resource sharing
group 3070. At the same time, the token distributor 3080 may
take recent workload levels into account, as it may not be
particularly useful to distribute tokens to a work target such as
3001C that has not received any work requests at all recently,
or to work target 3001A that has had a low workload in the
recent past, since such lightly loaded work targets may not be
able to benefit from any additional tokens. Other factors may
be taken into account as well in some embodiments, rejection
rates over recent time periods at various work requests,
expected future work request arrival rates, and so on.

In at least some embodiments, the token distributor 3080
may collect metrics on the arrival rates at the various mem-
bers of the resource sharing group over some interval, and
then determine whether and how to distribute tokens for the
next time interval. Thus, the token distributor may determine
the arrival rate ratios for the work targets for a time period Tm
(e.g., TO-T1), as well as the provisioned throughput ratios. In
at least some embodiments, ratios need not necessarily be
computed for either the arrival rates or the provisioned
throughputs, and other metrics indicative of, or associated
with, arrival rates and provisioned throughputs may be used
instead. The combined number of tokens to be distributed
among the work targets for admission control during a time
period Tn may then be determined based at least in part on the
throughput limit of the shared resource 3044. For example, in
one embodiment, the combined number may be computed by
subtracting the sum of the provisioned capacities of the work
targets (e.g., PC1+PC2+PC3+PC4 in the example of F1G. 22)
from the throughput limit of the shared resource (SRTL 3020
in FIG. 22). The combined number of tokens may be distrib-
uted among the work targets as a function of at least (a) the
respective work request arrival rate ratios or metrics and (b)
the provisioned capacities of the work target. The additional
tokens may then be used for admission control at the receiv-
ing work targets during time period Tn (and/or in other later
time periods), together with the tokens that may be generated
based on bucket refill rates at the work targets. In at least some
embodiments, the excess tokens may be distributed only to
burst-mode token buckets at the work targets, since the extra
tokens may be primarily intended to help the work targets
handle burst-mode operations. In other embodiments, the
tokens may be distributed to normal-mode token buckets as
well or instead of to the burst-mode token buckets. In some
embodiments, the tokens may be distributed to token buckets
for particular types of work requests, such as read token
buckets.

It is noted that in addition to the work request arrival rates,
other factors, including the provisioned capacities, that the
token distributor has to consider in its decisions may change
from one time interval to another. For example, in some
embodiments, at any given point in time, a client (or the
service) may decide to change the provisioned capacity of a
given work target. In addition, the number of work targets that
share access to a given resource may also change—for
example, a table partition may be added at any given time to
a shared storage device in some embodiments, or an existing
partition may be deleted. Thus, the token distributor may have
to keep track of various types of configuration changes, in
addition to obtaining metrics of work request arrival rates in
such embodiments.

In some embodiments, the throughput limits of several
different shared resources may be considered when determin-
ing how many tokens should be distributed among the shar-
ers. FIG. 23 illustrates examples of different types of
resources that may be shared by work targets at a storage node



US 9,218,221 B2

47

of a service (such as a database service or a more general
storage service), according to at least some embodiments. As
shown, the storage node 3110 may include a shared storage
device 3102 at which at least three data object partitions (i.e.,
work targets) O1-P1, 02-P3 and O3-P2 with respective pro-
visioned capacities PC1, PC2 and PC3 are stored. Shared
storage device 3102 may have a throughput limit SRTL
3120A in the depicted embodiment.

In addition to the storage device, work requests directed at
the partitions O1-P1, O2-P3 or O3-P2 may require the use of
other shared resources located either at the storage node 3310,
or external to the storage node. For example, shared data
structures 3115, such as operating system buffers, sockets,
Modes, or application-level objects (e.g., any of various types
of'locks) may be needed for processing work operations, and
such shared data structures may each have their own through-
put limits SRTL 3120B. Some amount of shared volatile
memory 3116 (e.g., main memory of the storage node) may
be required for work operations, and the memory may have its
own throughput limit 3120C in the depicted embodiment.
Shared processing elements 3118 (e.g., CPUs or cores) may
be utilized for processing the work operations corresponding
to the work requests, and the processing elements may have
their own throughput limit 3120D. The work requests and
corresponding responses may require the use of shared net-
work device 3122, such as a network interface card, with a
throughput limit SRTL 3120E. Shared network links 3132
with throughput limit 3120F may be needed for the work
requests. In some cases, access to an external resource 3136,
such as a configuration database with a throughput limit
3120G may also be required for at least some work opera-
tions.

When determining whether excess tokens are to be distrib-
uted among the work targets sharing some or all of these types
of resources, the token distributor may be configured to com-
pute a function of the respective throughput limits of all the
applicable shared resources in the depicted embodiment. In
some cases, the computation may involve determining the
minimum SRTL among the various SRTLs, for example, and
using that minimum value as the effective throughput limit
associated with the combination of the shared resources. Not
all the different types of shared resources illustrated in FIG.
23 may be used in any given implementation. In some
embodiments, other types of shared resources, not shown in
FIG. 23, may be used.

FIG. 24 illustrates an example of operations performed to
compute the number of excess tokens to be distributed among
work targets sharing a resource, according to at least some
embodiments. As shown, token distributor 3080 may com-
pute an effective shared resource throughput limit 3230 as a
function fl of the respective SRTLs 3220 (e.g., 3220A,
32208, ...3220N) of one or more shared resources. In some
implementations, the minimum SRTT may be selected as the
effective SRTL, for example, while in other implementations
some other function may be used. Arrival rate monitor(s)
3277 may be responsible for determining metrics 3240
indicative of the relative work request arrival rates at the
various work targets 3201 (e.g., 3201A,3201B and 3201C) of
the resource sharing group in the depicted embodiment. In
one implementation, for example, decisions regarding excess
token distribution may be made once every N minutes, and
metrics 3240 may accordingly be determined for N-minute
time windows. In some embodiments, the arrival rate moni-
tors 3277 may be incorporated within the respective admis-
sion controllers 180 of the work targets.

In the embodiment depicted in FIG. 24, toke distributor
3080 may determine the number of excess tokens 3240 rep-

20

30

35

40

45

65

48

resenting excess throughput capacity at the shared resources,
as a function 2 of the effective SRTL. 3230 and the provi-
sioned capacities of the work targets of the resource sharing
group. Thus, for example, if the effective SRTL 3240 during
a given time window Tm was X operations per second, and
the sum of the provisioned capacities (e.g., (PC1+PC2+PC3
in FIG. 24) of the work targets was Y operations per second
during the time window Tm, the excess tokens to be distrib-
uted during the (m+1)th time window T(m+1) may be com-
puted as X-Y in one implementation. More complex func-
tions f2 may be used in other implementations. It is noted that
at least in some scenarios, the SRTLs of the shared resources
(and hence the effective SRTL 3230) may change over time.
Similarly, the provisioned capacities of the work targets may
change over time as well, e.g., due to client requests. As a
result, the number of excess tokens 3240 may also vary in at
least some embodiments. It is noted that at least for some time
windows in some embodiments, the number of excess tokens
to be distributed during a given time window may be zero—
e.g., there may be no excess capacity available at the shared
resources at least temporarily.

Having determined the number of excess tokens 3240 to be
distributed, the token distributor 3080 may next decide how
many tokens (if any) are to be provided to each work target.
The distributed excess tokens (DET) 3242 for a given work
target (e.g., DET 3242A for work target 3201A, DET 3242B
for work target 3201B, and DET 3242C for work target
3201C) may be computed as a function 13 of the arrival rate
metric 3240 of the work target, and the provisioned capacity
of'the work target. Consider an example scenario in which the
respective arrival rate metric values for the three work targets
3201A, 3201B and 3201C during time window Tm are Al,
A2, and A3. For each work target k, an arrival rate ratio may
be determined in one implementation as A_ratio_k=(Ak/
(A1+A2+A3)), and a provisioned capacity ratio may be deter-
mines as P_ratio_k=(PCk/(PC1+PC2+PC3)). Assume fur-
ther that the combined number of excess tokens to be
distributed for the (m+1)st time window is E. The excess
tokens distributed to the work target k, DETk, may be com-
puted  as follows: DETk=E*((alpha*A_ratio_k)+
((1-alpha)*P_ratio_k))), where alpha is a constant. In this
example, alpha represents a relative weight given to the two
different factors being considered: the arrival rates, and the
provisioned capacities. The token distributor 3080 may adjust
alpha over time in some embodiments, e.g., in response to
observed trends in arrival rates and corresponding rejection
rates. In at least some embodiments, the excess tokens 3240
may only be distributed for the (m+1)st time window if the
combined arrival rates during the mth time window exceed a
threshold—e.g., if each of the arrival rates is lower than the
provisioned capacity of the work target, excess tokens may
not be distributed for the (m+1)st time window. In one
embodiment, arrival rates over a longer time period may be
considered when distribution the excess tokens—e.g., when
deciding how many tokens should be distributed to a given
work target during a S-minute time window, the token dis-
tributor 3080 may consider the arrival rate metrics obtained
for that work target during the previous 60 minutes. In some
embodiments, if the arrival rate at a given work target is zero
during a given time interval (e.g., work target 3001C of FIG.
2 is idle during the time period T0-T1) no tokens may be
distributed during the next time interval to that work target,
regardless of its provisioned capacity.

Methods for Distributing Tokens Representing Excess
Capacity at Shared Resources

FIG. 25 is a flow diagram illustrating aspects of operations

that may be performed to implement equitable distribution of



US 9,218,221 B2

49

excess tokens among work targets sharing a resource, accord-
ing to at least some embodiments. As shown in element 3301,
a set of work targets may be configured to utilize one or more
shared resources when performing operations corresponding
to client work requests. Such work targets may be termed a
resource sharing group. Each shared resource may have a
respective throughput limit SRTL. A respective set of token
buckets may be configured for admission control at each of
the work targets of the resource sharing group (element
3304), e.g., including one or more normal-mode buckets and/
or one or more burst-mode buckets similar to those described
earlier. Various parameters of the token buckets, such as the
refill rates, the maximum token population, etc., may be based
at least in part on the respective throughput capacities asso-
ciated with the work targets in at least some embodiments.

A number of metrics may be collected for the members of
the resource sharing group and the shared resource(s), such as
work request arrival rate metrics, rejection rate metrics,
changes to provisioned capacities, and/or changes to through-
put limits of the shared resources. In some embodiments, a
time-window based token distribution protocol may be
implemented, in which metrics obtained in a given set of one
or more time windows are used for token distribution during
some set of subsequent time windows. In the depicted
embodiment, metrics may be collected during time window t;
(element 3307) for determining token distributions for time
window t,,,. The combined number of excess tokens to be
distributed (DET-total) for time window t,, may be deter-
mined as a function of the shared resource throughput limits
(SRTLs) and the provisioned capacities of the work targets
(element 3310). For example, in one implementation, an
effective SRTL may be computed (e.g., the minimum of the
individual SRTLs if more than one shared resource is being
considered), and DET-total may be computed by subtracting
the sum of'the provisioned capacities of the work targets from
the effective SRTL.

At least in some implementations, it may be the case that
DET-total is zero for a particular time window, i.e., there may
be no excess tokens to be distributed. If DET-total exceeds
zero (as determined in element 3313), the number of tokens
DET-k to be provided to each work target k may then be
computed (element 3316), e.g., as a function of metrics asso-
ciated with the respective arrival rates and/or the respective
throughput capacities of the work targets. For example, as
discussed above in conjunction with the description of FIG.
24, afunction that assigns a relative weight alpha to the arrival
rate metrics and the provisioned capacity metrics of the dif-
ferent work targets may be used in some embodiments to
obtain DET-k values. The token populations at one or more
buckets associated with the work targets may then be adjusted
based on the DET-k values determined (element 3319). After
the tokens are added, admission control decisions may be
made as before, but with an enhanced ability to withstand
higher workloads at those work targets that received at least
some excess tokens. In some embodiments, excess tokens
may be added only to burst-mode token buckets, while in
other embodiments, the excess tokens may be added to nor-
mal-mode token buckets instead of or in addition to the burst-
mode buckets. In at least some embodiments, separate token
buckets may be maintained for different types of work
requests, such as reads versus writes. In such cases, excess
tokens may be distributed to only some types of buckets (e.g.,
to read buckets only, or to write buckets only) in some
embodiments, and to all types of buckets in other embodi-
ments.

The various functions and formulas used to determine the
distributed token counts (DETs) described above, such as the

25

30

40

45

55

65

50

functions f1, {2, and f3 shown in FIG. 24, may be tuned over
time, e.g., by the token distributor 3080 or an administrator, in
at least some embodiments. For example, the success of the
token distribution technique may be gauged by monitoring a
number of metrics such as the rejection rates at various work
targets during periods of high arrival rates, the utilization
levels of various shared resources, and so on, and the weight
alpha assigned to arrival rate metrics versus provisioned
capacity metrics may be adjusted accordingly, or the sizes of
the time windows may be adjusted.

In at least some embodiments, various techniques associ-
ated with admission control such as those described above,
including the use of simple or compound token buckets, token
sharing among work targets, and equitable distribution of
excess capacity of shared resources, may be used at a plurality
of services offered by a provider network. Combinations of
some or all of the techniques may be used in a given embodi-
ment, e.g., the use of compound burst-mode token buckets
may be combined with token sharing across work targets and
distribution of excess tokens. Networks set up by an entity
such as a company or a public sector organization to provide
one or more such services (such as various types of cloud-
based storage, computing or database services) accessible via
the Internet and/or other networks to a distributed set of
clients may be termed provider networks. A given provider
network may include numerous data centers (which may be
distributed across different geographical regions) hosting
various resource pools, such as collections of physical and/or
virtualized computer servers, storage servers with one or
more storage devices each, networking equipment and the
like, needed to implement, configure and distribute the infra-
structure and services offered by the provider. A number of
different hardware and/or software components, some of
which may be instantiated or executed at different data cen-
ters or in different geographical regions, may collectively be
used to implement the admission control techniques in vari-
ous embodiments.

Token-Based Pricing for Burst-Mode Operations

In some embodiments, clients may be charged for the work
performed on their behalf to support burst modes using a
different pricing methodology than may be used for normal
mode operations. As described above, token sharing across
work targets and distribution of excess tokens representing
shared resource capacity may also be implemented to support
burst-mode workloads, and the billing for token sharing and/
or excess token distribution may also differ from the billing
for normal-mode operations in some embodiments. FIG. 26
illustrates example components of a pricing manager 4080
than may be implemented for burst-mode operations, accord-
ing to at least some embodiments. As shown, a normal-mode
token bucket set 120 and a burst-mode token bucket set 125
may be instantiated for a work target. An admission controller
180 may be responsible for deciding whether to accept an
incoming work request based on the token population of one
or more provisioned capacity buckets 420 of the normal-
mode token bucket set and/or the token population of one or
more burst-mode buckets 422 of the burst-mode token bucket
set 125, e.g., using a technique or a combination of techniques
similar to those described above for various embodiments.

In the embodiment illustrated in FIG. 16, a pricing man-
ager 4080 may be configured to implement one or more
pricing policies associated with the use of tokens from the
burst-mode token bucket set 125 and/or the normal-mode
token bucket set 120. One or more burst-mode pricing poli-
cies 40058 and one or more normal-mode pricing policies
4005A may be used to determine how much to charge a client
for the consumption and/or transfer of tokens from one or



US 9,218,221 B2

51

more buckets, depending on the mode of operation. For nor-
mal-mode operations, for example, a static or fixed price may
be used for the use of tokens at a rate up to a provisioned
throughput capacity in accordance with a normal-mode pric-
ing policy 4005A, while burst-mode pricing polices 4005B
may be more dynamic in at least some embodiments as
described below. The pricing manager 4080 may be config-
ured to gather information from admission controller 180
regarding token population changes, and/or to inform the
admission controller regarding constraints to be considered
when making admission control decisions (e.g., the pricing
manager 4080 may notify the admission controller that, in
accordance with a particular burst-mode pricing policy, a
client’s budget constraints are to apply to the consumption of
tokens during burst mode from a particular burst-mode bucket
422, which may influence the admission controller’s deci-
sions.)

The pricing manager 4080 may include several different
subcomponents in some embodiments. For example, an inter-
face manager 4020 may be responsible for implementing a set
of programmatic interfaces in one embodiment, such as one
or more web pages, APIs, GUIs (graphical user interfaces),
command-line tools and the like, that may be used for various
pricing-related interactions with clients, such as pricing
policy selection based on client input, or for performing vari-
ous aspects of marketplace transactions of the kinds
described below. The interface manager 4020 may also be
responsible in some implementations for some types of inter-
nal interactions within the network-accessible service, such
as communications between the pricing manager 4080 and
the admission controller 180. In some embodiments, token
marketplaces may be established, enabling some clients to
advertise the availability of excess tokens that can be acquired
by other clients for a price. Token prices may be static or fixed
for some types of marketplace transactions in at least some
such embodiments, while for other transactions, the prices
may be determined dynamically (e.g., using techniques simi-
lar to auctions, or based on time windows). A marketplace
manager component 4040 of the pricing manager 4080 may
be responsible for supporting marketplace transactions in the
depicted embodiment.

One or more metering components 4030 may be config-
ured to gather token usage/consumption metrics from admis-
sion controller 180 in the depicted embodiment. In at least
one embodiment, multiple instances of admission controllers
180 may be implemented (e.g., one admission controller
instance for each work target, or one instance for N work
targets), and the metering components may aggregate token
usage data from multiple admission controller instances 180
in such embodiments. In some embodiments the price for
consuming or transferring tokens may vary based on resource
utilization levels (e.g., processor utilization levels, storage
device utilization levels, or network utilization levels) of vari-
ous resources used for fulfilling work requests. In such
embodiments in which token pricing is a function of resource
utilization levels, the metering components 4030 may also
collect utilization information from various parts of the infra-
structure set up for the network-accessible service. A bill
generator 4050 may be configured to analyze various token-
related metrics collected from the admission controller(s) and
generate billing amounts to be charged to clients, based on the
pricing policy or policies in effect. In some embodiments, the
pricing manager 4080 may include a pricing database 4060
within which, for example, pricing policy details and/or bill-
ing history information may be stored. The pricing database
4060 may also be used for trend analysis in some embodi-
ments, e.g., to determine components of dynamic pricing

30

40

45

52

based on earlier pricing changes and/or on based on usage
patterns derivable from billing history. According to at least
one embodiment, one or more of the subcomponents of pric-
ing manager 4080 may be incorporated within an admission
controller 180. In some embodiments, the pricing manager
4080 may comprise a plurality of software and/or hardware
components that may be distributed among one or more com-
puting devices.

Token-Based Pricing Policy Elements

FIG. 27 illustrates example elements of a token-based pric-
ing policy 4005, according to at least some embodiments. In
some embodiments, respective pricing policies may be
applied to different buckets used for admission control—i.e.,
the prices that clients are charged may differ for different
buckets in the normal-mode token bucket set 120, and/or for
different buckets in the burst-mode token bucket set 125. For
a given pricing policy 4005 associated with one or more
buckets in a bucket set, one or more applicability criteria 4105
may be specified in the depicted embodiment, indicating for
example the conditions under which the pricing policy is to be
used for determining client billing amounts for one or more
token population change operations at the bucket. In one
simple implementation, for example, a particular pricing
policy 4005 may be applied to every token consumed from a
burst-mode bucket 422; in such a scenario, the applicability
criterion 4105 may simply indicate the logical equivalent of
“apply this pricing policy for each token consumed”. In some
embodiments, more complex applicability criteria 4105 may
be specified, such as criteria based on the token population of
some other bucket or buckets (e.g., the logical equivalent of
“apply this pricing policy to bucket B1 token consumptions
only if the token population of bucket B2 is within the range
B2low-B2high”), based on client budgets (e.g., the logical
equivalent of “apply this pricing policy to client C1°s bucket
B1 only if C1’s remaining budget for burst-mode tokens
exceeds amount A”), based on timing windows (e.g., “apply
this pricing policy to tokens consumed from bucket B1 during
the time periods 01:00 AM to 06:00 AM on weekdays”), and
so on. In some cases the applicability criteria may depend on
the number and type of buckets being used, e.g., some pricing
policies may apply to a given shared-resource capacity burst-
mode bucket Bl only if a compound token bucket is also
being used for burst-mode admission control.

Generally speaking, the pricing associated with token
population changes (e.g., token consumption or transfer) may
comprise static pricing components 4108 (e.g., upfront fees
for consuming up to a specified number of burst-mode tokens
ata specified rate during a specified time period) and dynamic
pricing components 4111 (e.g., rates that may vary during
different time windows of a workday, or rates that may vary
based on supply and demand). Some pricing policies may
include both static and dynamic pricing components in the
depicted embodiment, while other polices may include only
static components or only dynamic components. For certain
types of token transfers or sales, dynamic pricing may be
implemented using auctions in at least some embodiments. In
at least one embodiment, the pricing for at least some token
buckets may change based on supply and demand, e.g., a
“spot” pricing policy for burst-mode tokens may be imple-
mented, according to which a particular client may be pro-
vided a token only if the client’s bid equals or exceeds the
current spot price at the time of the bid.

In some embodiments, more than one client may be
involved in a given token transaction. For example, in
embodiments in which the pricing manager 4080 implements
a token marketplace, a client C1 may wish to indicate that
some number of tokens (e.g., tokens that can be used for



US 9,218,221 B2

53

burst-mode operations) that C1 owns are available for sale to
other clients. The pricing manager 4080 may advertise the
availability of the tokens (or notify specific clients that may be
potential candidates for purchasing the tokens), and a differ-
ent client C2 may purchase the tokens from C1. In such a
scenario, payment transfers between the clients may be facili-
tated by the pricing manager 4080, e.g., in accordance with an
inter-client payment transfer policy 4117 (that may be
included in client A’s pricing policy, in client C2’s pricing
policy, or in both clients’ policies, for a particular type of
token bucket) in the depicted embodiment. The inter-client
payment transfer policy 4117 may indicate, for example,
service charges that either the buyer or the seller may incur for
the sale, and/or the schedule according to which inter-client
payments are processed (e.g., accumulated payments may be
settled or transferred once a week according to one schedule).
In some embodiments, tokens may be used (at least tempo-
rarily) as the logical equivalent of currencies for pricing pur-
poses—for example, a client C1 may owe the service (or may
owe a different client) N tokens, and the debt may be
redeemed either using actual currencies or using replacement
tokens (for example, a debt of N tokens may be redeemed by
transferring N+k tokens, where k tokens represent an “inter-
est” on the debt, with k being computed based on how long it
took the debtor to repay the debt). In some embodiments in
which tokens are shared among multiple work targets, includ-
ing work targets owned by different clients, inter-client pay-
ment transfer policies may also be applicable for token shar-
ing techniques similar to those described earlier, such as the
example token sharing protocol illustrated in FIG. 17.

In at least some embodiment, at least for some types of
token buckets, the admission controller 180 may not be able
to provide any firm guarantees about future admission control
decisions—e.g., as described earlier, for burst-mode admis-
sion control, a “best-effort” approach may be used, and there
may in general be a higher probability that work requests are
rejected during burst mode than during normal mode. The
pricing policy 4005 may include an indication of one or more
best-effort constraints 4120 that may apply to the tokens
obtained or consumed in accordance with the pricing policy
in some embodiments. For example, the constraints 4120 may
inform a client that, despite the best effort of the admission
controller, and despite the charge incurred by a client to
obtain some number of burst-mode tokens, work requests
may have to be rejected or retried if, for example, the work
target runs into throughput capacity limitations of a shared
physical or logical resource during burst mode. The best-
effort constraints 4120 may thus serve as reminders to clients
that under some (typically rare) circumstances, their purchase
of tokens may not be sufficient to ensure a high acceptance
rate or a high quality of responses to all their work requests. In
some embodiments, at least some clients may be offered
discounts in accordance with discount policies 4124 indi-
cated in a pricing policy 4005—e.g., if a client is unable to
utilize more than X % of their purchased burst-mode tokens
due to any of various constraints or causes that are not the
responsibility of the client, the client may be reimbursed for
some or all of the purchased burst-mode tokens. In one
embodiment, volume discounts (e.g., rebates based on the
total number of tokens purchased) may be supported, and a
discount policy 4124 may indicate the terms of such dis-
counts. In various embodiments, some of the kinds of ele-
ments shown in FIG. 27 may not be included in a given
pricing policy 4005, and/or other elements not shown in FI1G.
27 may be included.

30

40

45

50

54
Methods for Token Pricing

FIG. 28 is a flow diagram illustrating aspects of operations
that may be performed to determine billing amounts for burst-
mode operations, according to at least some embodiments. As
shown in element 4201, in the depicted embodiment, some
number of token buckets may be instantiated for workload
management at one or more work targets configured to oper-
ate in one or more modes (such as normal mode and burst
mode) of the kinds described earlier. Decisions as to whether
to accept a work request for execution at a work target may be
made based on the token population of one or more of the
buckets, and a decision to accept a work request may be
accompanied, for example, by the consumption of some num-
ber of tokens from one or more buckets. As shown in element
4204, one or more pricing policies to be applied to operations
that result in token population changes at some or all of the
buckets may be determined, e.g., by a pricing manager 4080
in response to policy selection requests from clients or based
on internal configuration parameters of the network-acces-
sible service. For example, a pricing policy may indicate an
amount to be charged to a client for the consumption of a
token in a bucket B1 during burst-mode, for transfer of a token
from one bucket B1 to another bucket B2, for short-term or
long-term changes to bucket refill rates and/or maximum
token population limits, or for some combination of these
kinds of changes. Some pricing policies may be applied only
during burst mode, while other pricing policies may be
applied during normal mode, or may be applied to prepara-
tions for future burst modes (such as transfers of unused
tokens from a normal-mode bucket to a burst-mode bucket,
sharing of tokens across work targets, or the distribution of
excess tokens as described earlier). In at least one embodi-
ment, a normal-mode pricing policy may include a flat fee for
tokens in a provisioned capacity bucket 420, which may be
consumed to accept up to a provisioned throughput capacity
of'work requests; such a fee may not change regardless of the
actual number of tokens used from the provisioned capacity
bucket. Some pricing policies may be applicable to transac-
tions conducted using a token marketplace, which may for
example be supported using programmatic interfaces imple-
mented at or by a pricing manager 4080 in some embodi-
ments.

Each pricing policy may include, for example, one or more
applicability criteria for the policy (which may specify the
mode(s) of operation, such as burst mode, during which the
policy isto be applied, as well as any other specific conditions
that have to be met for the policy to be applied), and one or
more static or dynamic pricing components or amounts asso-
ciated with operations that result in token population changes.
In some implementations, pricing formulas may be specified
in the pricing policy, e.g., in the form of functions of a com-
bination of factors, instead of absolute pricing amounts. In
some embodiments, a pricing policy may include one or more
additional elements similar to those illustrated in FIG. 27,
such as inter-client payment transfer policies, discounts and
the like. A pricing manager 4080 may be configured to col-
lect, aggregate, or record, over various time periods, the
changes in token populations at various buckets associated
with pricing policies, as well as indications of which pricing
policies were applicable to which sets of changes in token
population (element 4208). Any of various aggregation tech-
niques may be used for collection of the data regarding token
population changes in different embodiments—e.g., in some
embodiments, each and every change to the token population
at a given bucket may be recorded, while in other embodi-
ments, token counts may be sampled periodically or collected
at scheduled intervals. It is noted that in some implementa-



US 9,218,221 B2

55

tions, there may be some types of token population changes
for which the client is not charged at all—e.g., some token
operations may be free for at least some clients.

In some embodiments, if there are no changes to token
population during some time interval, a client may not be
charged for the tokens in the bucket, while in other embodi-
ments clients may be charged for at least some types of tokens
even if they remain unused (e.g., if the token population of a
given bucket does not change during a given time interval). In
one embodiment, the amounts charged may vary for different
categories of tokens—e.g., writes may be more expensive
than reads, or vice versa, either during normal mode, during
burst mode, or both normal and burst modes. Based at least in
part onthe records of token population changes at one or more
buckets, and at least in part on the pricing policy or policies,
a billing amount may be generated for a client (element 4212)
in the depicted embodiment. It is noted that in various
embodiments, pricing policies may be selected for some orall
of the different aspects of token-based admission control
described earlier, including for example policies applied to
the use of compound token buckets for supporting multiple
categories of bursts, policies applied to priority-based catego-
ries of token buckets, and the like.

FIG. 29 is a flow diagram illustrating aspects of operations
associated with conditional burst-mode pricing, according to
at least some embodiments. In the depicted embodiment, a
burst-mode bucket set 125 may comprise a plurality of buck-
ets including a local-burst-limit bucket 604 and one or more
shared-resource capacity buckets 606, and different pricing
policies may be applicable to the token population at one of
the burst-mode buckets, based on the population at another
burst-mode bucket. The next work request directed to a work
target may be received (element 4301). If the work target is
not in burst mode (as detected in element 4304), e.g., based on
the token population in one or more normal-mode token
buckets, a normal-mode pricing policy may be used to deter-
mine the pricing to be used for the work request (element
4308). For example, as described above, during normal mode
a flat upfront fee proportional to the provisioned throughput
capacity of the work target may be charged to a client in some
embodiments, independent of the actual number of tokens
consumed as long as work requests arrive at a rate no greater
than the provisioned throughput capacity.

If the work target is in burst mode, as also detected in
element 4304, in the depicted embodiment the token popula-
tion in at least one shared-resource capacity bucket 606 may
be determined. If the shared-resource capacity bucket or
buckets contain a sufficient number of tokens based on the
consumption policies in effect (element 4312), the token
population of a local-burst-limit bucket 604 applicable to the
work target may be checked next. The population of the
local-burst-limit bucket 604 may, for example, be indicative
of the available throughput capacity based on a throughput
limit assigned to the work target when considered in isolation
(without taking shared resources into account) in the depicted
embodiment. The pricing for accepting the work request for
execution may depend on the population in both the shared-
resource capacity bucket(s) and the local-burst-limit bucket
in the depicted embodiment. If both the shared-resource
capacity bucket(s) and the local-burst-limit bucket contain
sufficient tokens based on their respective consumption poli-
cies (as determined in elements 4312 and 4316), the work
request may be accepted, one or more tokens may be con-
sumed from both types of buckets, and a first burst-mode
pricing policy may be applied (element 4320). If the shared-
resource capacity bucket or buckets contain enough tokens,
but the local-burst-limit bucket does not, in the depicted

10

15

20

25

30

35

40

45

50

55

60

65

56

embodiment, the work request may still be accepted for
execution. One or more tokens may be consumed from the
shared-resource capacity bucket(s), and a second burst-mode
pricing policy may be applied (clement 4324). If neither the
shared-resource capacity bucket(s) nor the local-burst-limit
bucket contains enough tokens, the work request may be
rejected, retried or delayed (element 4328). After the admis-
sion control decision is made, resulting in either acceptance
(elements 4320 or 4324) or rejection (element 4328), the next
work request received may be dealt with, e.g., by implement-
ing operations corresponding to element 4301 onwards. The
conditional burst-mode pricing approach illustrated in FIG.
29 may be used in environments where for example the local-
burst-limit bucket maximum populations are set conserva-
tively, while the shared resources whose available throughput
capacity is represented in the shared-resource capacity
bucket(s) may at least during some time periods be capable of
supporting higher work request arrival rates than would be
supportable using the local-burst-limit buckets alone. If
workloads at some of the work targets utilizing the shared
resources vary substantially over time, there may be periods
where enough capacity becomes available at the shared
resources to support short-duration bursts, even though the
local-burst-limit buckets are empty, and the second pricing
policy may be useful at least in such scenarios. Similar pric-
ing techniques to those illustrated in FIG. 29 may also be used
in conjunction with the techniques for equitable distribution
of tokens representing excess capacity at shared resources
that were described earlier.

FIG. 30 is a flow diagram illustrating aspects of operations
that may be implemented to enable client selection of pricing
policies, according to at least some embodiments. As shown
in element 4401, one or more programmatic interfaces such
as web pages, web sites or APIs, may be implemented to
allow clients to select from among a plurality of supported
pricing policies. An interface manager subcomponent of a
pricing manager 4080 may be responsible for the implemen-
tation in at least some embodiments. In some embodiments
multiple pricing policies may be available for burst-mode
operations, while in other embodiments multiple policies
may be supported for both normal-mode and burst-mode
operations. In at least some embodiments, pricing policies
that specifically apply to certain types of parameter changes
(such as short-term or long-term changes to refill rates or
maximum token population limits) may be selectable via the
interfaces. Indications of the available pricing policies, or of
policy templates that can be filled out or parameterized, may
be provided to clients (element 4404). For example, details
regarding the various elements (such as elements illustrated
in FIG. 27) of different pricing policies may be provided via
a web site in one implementation.

Based on workload needs and/or budgets, a given client
may indicate a selected policy and/or parameters to be used,
e.g., via a pricing policy request submitted using one of the
implemented interfaces (element 4408). In response to such a
request, the pricing manager 4080 may initiate implementa-
tion of the selected pricing policy and/or parameters on behalf
of the client (element 4412). In at least some implementa-
tions, for example, the pricing manager 4080 may communi-
cate with an admissions controller 180 to initiate the use of the
pricing policy.

FIG. 31 is a flow diagram illustrating aspects of operations
that may be implemented to enable a marketplace for burst-
mode tokens, according to at least some embodiments. As
shown in element 4501, one or more programmatic interfaces
such as web pages and/or APIs may be implemented (e.g., by
an interface manager 4020) to support various types of trans-



US 9,218,221 B2

57

actions involving the advertisement, sale, purchase, sharing
or transfer of tokens usable for burst-mode admission control
and/or normal-mode admission control in the depicted
embodiment. A marketplace manager 4040 (e.g., a subcom-
ponent of the pricing manager) may receive indications of
token transaction offers, such as offers to sell, auction, or buy
tokens, from one or more clients via the implemented inter-
faces (element 4504), and may publicize or advertise the
offers to other clients. In at least some embodiments the
pricing manager and/or the admission controller may be
aware of clients that need tokens (e.g., clients whose work
requests have experienced higher than normal rates of rejec-
tions during a recent time interval), and may be able to match
token offers with such candidate token consumers.

The marketplace manager 4040 may receive an indication
of'a completed transaction, such as a transaction for the sale
or transfer of some set of tokens, based on a fixed price or a
successful auction bid (element 4508) via one or more of the
interfaces. Accordingly, in the depicted embodiment the mar-
ketplace manager 4040 may change the token populations of
the affected bucket(s) (element 4512), e.g., by reducing the
number of tokens in one or more source buckets and/or
increasing the token count in one or more other buckets.
Billing amounts to be charged to the clients (which may
include, for example, service charges to both the buying client
and the selling client in a given marketplace transaction) may
be generated according to the details of the transaction and the
applicable pricing policy or policies 4005 (element 4516).

In at least some embodiments, as described earlier, a work
target such as a database table may be divided into a plurality
oflogical partitions, and admission control may be performed
atthe logical partition level, with arespective set of admission
control parameters and token buckets being used for each
partition. For example, a large database table comprising a
terabyte of data may be configured as four logical partitions of
250 megabytes each, with respective sets of token buckets for
admission control. In some implementations, as also
described earlier, multiple physical replicas of each logical
partition may be maintained, e.g., for data durability and/or
for high availability. In some scenarios, the client workload
may not always be uniformly distributed across the partitions.
As a result, at a given point in time, the number of available
tokens in a token bucket (such as a burst-mode bucket 422) at
one heavily used partition may be much lower than the num-
ber of tokens available in corresponding token buckets at
other, less-used, partitions. Accordingly, to reduce the num-
ber of work request rejections that might otherwise occur due
to the heavy asymmetric workload, the admission
controller(s) 180 for the different partitions may in some
embodiments utilize token-sharing protocols such as those
described with reference to FIG. 16-FIG. 21, and the client
that owns or uses the partitions may be charged for the token
sharing in accordance with a pricing policy for inter-partition
token sharing. FIG. 32 is a flow diagram illustrating aspects of
operations that may be implemented for pricing transfers of
tokens between different partitions of a work target, accord-
ing to at least some embodiments.

As shown in element 4601 of FIG. 32, a work target (such
as a database table or a logical volume) may be configured as
a collection of partitions, each with a respective token buckets
for admission control, such as a respective normal-mode
bucket set and a respective burst-mode bucket set. Each par-
tition may thus be considered a separate work target with
independently configurable admission control parameters in
the depicted embodiment. A pricing manager 4080 may be
configured to determine a pricing policy to be applied to token
transfers between the buckets of different partitions (element

10

15

20

25

30

35

40

45

50

55

60

65

58

4604). For example, a pricing policy for transferring N tokens
from a burst-mode token bucket BB1 at partition P1, to a
burst-mode token bucket BB2 at partition P2 may be deter-
mined based on the client’s input, or based on configurable
parameters. Such token transfers may be implemented based
on the occurrence of various types of triggering events in
different embodiments, such as the detection that a token
population has fallen below a threshold, the detection that a
particular amount of time has elapsed since the last time the
need for a token transfer between partitions was investigated,
the detection of a threshold rejection rate for work requests,
and so on. As shown in element 4608, a triggering event to
check whether an inter-partition token transfer should be
attempted may be detected.

The token populations at a subset or all of the partitions
may be examined, to see if any partition’s token count is
below a threshold T1. If such a partition “p” is found (as
determined in element 4612), and the token population at a
different partition “q” is found to be above a threshold T2 (as
determined in element 4616), some number of tokens may be
transferred from partition “q” to partition “p” in the depicted
embodiment (element 4620). In some cases multiple parti-
tions with token counts below threshold T1 may be found,
and/or multiple partitions with token populations above T2
may be found, in which case token transfers may be initiated
between multiple source and recipient bucket pairs. For
example, if during a given examination of the current token
populations at partitions p, q, r and s, partitions p and r are
found to have token populations below threshold T1, while
partition q is found to have T2+N tokens, and partition s does
not have enough tokens to transfer any, N/2 tokens may be
added to partitions p and r, and the population of q may be
reduced by N in one implementation. A record of the transfer
ortransters may be kept, and eventually a billing amount to be
charged to a client for the transfer may be generated based on
the record(s) and the pricing policy (element 4624). After a
decision (either positive or negative) to transfer tokens
between partitions is made, operations corresponding to ele-
ments 4608 onward may be repeated for the next triggering
event and/or for different source and destination partition
pairs.

As described earlier, in at least some embodiments, the
token buckets used for admission control may each have a set
of configurable parameters, such as refill rates, maximum
token populations, and the like. In some embodiments, clients
may wish to change, either for a short time or for long periods,
one or more parameters associated with a given token bucket.
For example, a client may be able to anticipate that very high
bursts of work requests may occur at random times during the
next day or the next week, and may be willing to pay extra to
accommodate such bursts. Accordingly, in some embodi-
ments, pricing policies may be supported to change token
bucket refill rates and/or other configuration setting changes.
FIG. 33 is a flow diagram illustrating aspects of operations
that may be implemented for pricing changes to token bucket
configuration settings, according to at least some embodi-
ments. As shown in element 4701, initial policies and param-
eters may be configured for one or more token buckets includ-
ing normal-mode and burst-mode buckets, e.g., at the time
that the work target is initialized. A pricing policy for param-
eter changes to the bucket(s) may be determined (element
4704), and clients may be notified of the costs associated with
changing the parameters. A request to change one or more
parameters for a specified bucket or buckets may be received,
e.g., to change the refill rate or the maximum token popula-
tion during a specified time window (element 4708). The
parameters may be changed based on the request (element



US 9,218,221 B2

59

4712) (e.g., new values for the parameters may be used for the
duration of the time window, at the end of which the initial
values may be re-applied), and billing amounts may eventu-
ally be generated based on the parameter changes imple-
mented and the pricing policy (element 4716).

It is noted that in various embodiments, the operations
illustrated in the flow charts of FIG. 10-15, FIG. 21, FIG. 25,
and FIG. 28-33 may be performed in a different order than
that shown, and/or performed in parallel. In some embodi-
ments, one or more of the operations illustrated herein may be
omitted, and/or other operations not shown in the figures may
be performed.

Use Cases

The techniques described above, of token-based admission
control and pricing for burst mode operations, may be useful
in a variety of different scenarios. For example, in some
database environments clients may have very large (terabytes
or petabytes) tables or table sets, and very high I/O rates may
be directed for some time periods (but not other periods) at the
tables. Similarly, other network-accessible services (such as
general purpose storage services, compute-intensive services
and the like) may also experience temporary periods of high
workloads. In general it may be very hard to anticipate the
variation in workloads directed to a given work target such as
a database table over time. Clients may not wish to pay for
high workload levels that occur only occasionally or rarely. At
the same time, while the provider of the service may not wish
to set aside enough resources to handle very high levels of
work requests over long periods, the provider may wish to
support, to the extent possible, temporary bursts in arrival
rates without rejecting large numbers of requests or increas-
ing the response times of customer requests substantially.
Using the kinds of token-based admission control approaches
described herein, the provider may be able to accommodate
the vast majority (if not all) of bursts in request arrival rates
without wasting resources. The use of token-sharing tech-
niques and the equitable distribution of excess capacity of
shared resources may also help clients handle unevenly dis-
tributed work request arrival rates.

Support for flexible (e.g., client-selected) pricing policies
for burst-mode and/or normal-mode operations may increase
clients’ confidence that their budget priorities can be met
while supporting non-uniform workloads of various kinds.
The ability to buy and sell tokens in a token marketplace may
increase the likelihood that even if clients occasionally make
inaccurate workload predictions, the penalties for such inac-
curacies can be minimized.

Tustrative Computer System

In at least some embodiments, a server that implements a
portion or all of one or more of the technologies described
herein, including the techniques to implement token-based
admission controllers, token distributors, pricing managers,
and/or various kinds of work targets, may include a general-
purpose computer system that includes or is configured to
access one or more computer-accessible media. FIG. 34 illus-
trates such a general-purpose computing device 8000. In the
illustrated embodiment, computing device 8000 includes one
or more processors 8010 coupled to a system memory 8020
via an input/output (I/O) interface 8030. Computing device
8000 further includes a network interface 8040 coupled to [/O
interface 8030.

In various embodiments, computing device 8000 may be a
uniprocessor system including one processor 8010, or a mul-
tiprocessor system including several processors 8010 (e.g.,
two, four, eight, or another suitable number). Processors 8010
may be any suitable processors capable of executing instruc-
tions. For example, in various embodiments, processors 8010

10

15

20

25

30

35

40

45

50

55

60

65

60

may be general-purpose or embedded processors implement-
ing any of a variety of instruction set architectures (ISAs),
such as the x86, PowerPC, SPARC, or MIPS ISAs, or any
other suitable ISA. In multiprocessor systems, each of pro-
cessors 8010 may commonly, but not necessarily, implement
the same ISA.

System memory 8020 may be configured to store instruc-
tions and data accessible by processor(s) 8010. In various
embodiments, system memory 8020 may be implemented
using any suitable memory technology, such as static random
access memory (SRAM), synchronous dynamic RAM
(SDRAM), nonvolatile/Flash-type memory, or any other type
of memory. In the illustrated embodiment, program instruc-
tions and data implementing one or more desired functions,
such as those methods, techniques, and data described above,
are shown stored within system memory 8020 as code 8025
and data 8026.

In one embodiment, I/O interface 8030 may be configured
to coordinate I/O traffic between processor 8010, system
memory 8020, and any peripheral devices in the device,
including network interface 8040 or other peripheral inter-
faces such as various types of persistent and/or volatile stor-
age devices used to store physical replicas of data object
partitions. In some embodiments, I/O interface 8030 may
perform any necessary protocol, timing or other data trans-
formations to convert data signals from one component (e.g.,
system memory 8020) into a format suitable for use by
another component (e.g., processor 8010). In some embodi-
ments, [/O interface 8030 may include support for devices
attached through various types of peripheral buses, such as a
variant of the Peripheral Component Interconnect (PCI) bus
standard or the Universal Serial Bus (USB) standard, for
example. In some embodiments, the function of 1/O interface
8030 may be split into two or more separate components,
such as a north bridge and a south bridge, for example. Also,
in some embodiments some or all of the functionality of I/O
interface 8030, such as an interface to system memory 8020,
may be incorporated directly into processor 8010.

Network interface 8040 may be configured to allow data to
be exchanged between computing device 8000 and other
devices 8060 attached to a network or networks 8050, such as
other computer systems or devices as illustrated in FIG. 1a
through FIG. 33, for example. In various embodiments, net-
work interface 8040 may support communication via any
suitable wired or wireless general data networks, such as
types of Ethernet network, for example. Additionally, net-
work interface 8040 may support communication via tele-
communications/telephony networks such as analog voice
networks or digital fiber communications networks, via stor-
age area networks such as Fibre Channel SANs, or via any
other suitable type of network and/or protocol.

In some embodiments, system memory 8020 may be one
embodiment of a computer-accessible medium configured to
store program instructions and data as described above for
FIG. 1a through FIG. 33 for implementing embodiments of
the corresponding methods and apparatus. However, in other
embodiments, program instructions and/or data may be
received, sent or stored upon different types of computer-
accessible media. Generally speaking, a computer-accessible
medium may include non-transitory storage media or
memory media such as magnetic or optical media, e.g., disk
or DVD/CD coupled to computing device 8000 via I/O inter-
face 8030. A non-transitory computer-accessible storage
medium may also include any volatile or non-volatile media
such as RAM (e.g. SDRAM, DDR SDRAM, RDRAM,
SRAM, etc.), ROM, etc., that may be included in some
embodiments of computing device 8000 as system memory



US 9,218,221 B2

61

8020 or another type of memory. Further, a computer-acces-
sible medium may include transmission media or signals such
as electrical, electromagnetic, or digital signals, conveyed via
a communication medium such as a network and/or a wireless
link, such as may be implemented via network interface 8040.
Portions or all of multiple computing devices such as that
illustrated in F1G. 34 may be used to implement the described
functionality in various embodiments; for example, software
components running on a variety of different devices and
servers may collaborate to provide the functionality. In some
embodiments, portions of the described functionality may be
implemented using storage devices, network devices, or spe-
cial-purpose computer systems, in addition to or instead of
being implemented using general-purpose computer systems.
Theterm “computing device”, as used herein, refers to at least
all these types of devices, and is not limited to these types of
devices.

CONCLUSION

Various embodiments may further include receiving, send-
ing or storing instructions and/or data implemented in accor-
dance with the foregoing description upon a computer-acces-
sible medium. Generally speaking, a computer-accessible
medium may include storage media or memory media such as
magnetic or optical media, e.g., disk or DVD/CD-ROM, vola-
tile or non-volatile media such as RAM (e.g. SDRAM, DDR,
RDRAM, SRAM, etc.), ROM, etc., as well as transmission
media or signals such as electrical, electromagnetic, or digital
signals, conveyed via a communication medium such as net-
work and/or a wireless link.

The various methods as illustrated in the Figures and
described herein represent exemplary embodiments of meth-
ods. The methods may be implemented in software, hard-
ware, or a combination thereof. The order of method may be
changed, and various elements may be added, reordered,
combined, omitted, modified, etc.

Various modifications and changes may be made as would
be obvious to a person skilled in the art having the benefit of
this disclosure. It is intended to embrace all such modifica-
tions and changes and, accordingly, the above description to
be regarded in an illustrative rather than a restrictive sense.

What is claimed is:
1. A system, comprising:
one or more computing devices configured to:
configure a plurality of work targets with respective sets
of token buckets for admission control of work
requests, including a first work target with a first set of
token buckets, wherein a decision to accept a work
request for execution at the first work target is to be
based at least in part on a token population of one or
more token buckets of the first set;
in response to a determination that a token sharing evalu-
ation criterion has been met at the first work target,
identify a second work target of the plurality of work
targets with which to exchange token population
information from the first work target, wherein the
second work target is configured with a second set
of token buckets;
determine, based at least in part on an analysis of
respective token populations of a first bucket in the
first set and a second bucket in the second set,
whether to initiate a token transfer between the first
and second buckets; and
inresponse to a determination to initiate a token trans-
fer,

10

15

20

25

30

35

40

45

50

55

60

65

62

increase the token population of one bucket of the
first and second buckets by a particular number
of tokens, and decrease the token population of
another bucket of the first and second buckets by
the particular number of tokens, in accordance
with a transfer direction identified for the token
transfer; and

in response to receiving a work request directed to
the first work target, accept the work request for
execution based at least in part on the changed
token population of the first bucket.

2. The system as recited in claim 1, wherein the plurality of
work targets comprise a first collection of one or more storage
objects created at a network-accessible storage service on
behalf of a first client, and a second collection of one or more
storage objects created at the network-accessible storage ser-
vice on behalf of a second client, wherein the first work target
comprises at least a portion of a storage object of the first
collection, and wherein, to identify the second work target,
the one or more computing devices are configured to select
the second work target from the first collection.

3. The system as recited in claim 1, wherein the first work
target comprises at least a portion of a base database table
instantiated on behalf of a particular client of a network-
accessible database service, and the second work target com-
prises atleast a portion of a derived database table instantiated
at the network-accessible database service to implement a
secondary index on the base database table.

4. The system as recited in claim 1, wherein the first set of
token buckets comprises a normal-mode bucket used for
admission control during a normal mode of operation of the
first work target, and one or more burst-mode token buckets
used for admission control during a burst mode of operation at
the first work target, wherein the one or more burst-mode
token buckets include the first bucket.

5. The system as recited in claim 1, wherein the second
work target is selected from among the plurality of work
targets using a random selection policy in accordance with a
gossip protocol.

6. A method, comprising:

performing, by one or more computing devices:

configuring a plurality of work targets with respective
token bucket sets for admission control of work
requests, including a first work target with a first token
bucket set, wherein a decision to accept a work
request for execution at the first work target is to be
based at least in part on a token population of one or
more token buckets of the first token bucket set;
in response to determining that a token sharing evalua-
tion criterion has been met at the first work target,
initiating a token transfer in a particular direction
between a first bucket of the first token bucket set
and a second bucket of a second token bucket set
associated with a second work target of the plural-
ity of work targets; and
accepting, in response to receiving a work request
directed to the first work target, the work request for
execution based at least in part on the token popu-
lation of the first bucket subsequent to the token
transfer.

7. The method as recited in claim 6, wherein the plurality of
work targets comprise a first collection of one or more storage
objects created at a network-accessible storage service on
behalf of a first client, and a second collection of one or more
storage objects created at the network-accessible storage ser-
vice on behalf of a second client, wherein the first work target



US 9,218,221 B2

63

comprises at least a portion of a storage object of the first
collection, further comprising performing, by the one or more
computing devices:

selecting the second work target from the first collection.

8. The method as recited in claim 6, wherein the first work
target comprises at least a portion of a base database table
instantiated on behalf of a particular client of a network-
accessible database service, and the second work target com-
prises atleasta portion of a derived database table instantiated
at the network-accessible database service to implement a
secondary index on the base database table.

9. The method as recited in claim 6, wherein the first token
bucket set comprises a normal-mode bucket used for admis-
sion control during a normal mode of operation of the first
work target, and one or more burst-mode token buckets used
for admission control during a burst mode of operation at the
first work target, wherein the one or more burst-mode token
buckets include the first bucket.

10. The method as recited in claim 6, further comprising
performing, by the one or more computing devices:

selecting the second work target using a random selection

policy.

11. The method as recited in claim 6, further comprising
performing, by the one or more computing devices:

selecting the second work target in accordance with a gos-

sip protocol.

12. The method as recited in claim 6, further comprising
performing, by the one or more computing devices:

determining whether the token sharing evaluation criterion

has been met based at least in part on one or more of (a)
an amount of time since a previous evaluation was ini-
tiated at the first work target, (b) an indication that the
token population of the first token bucket has fallen
below a first threshold value, (¢) an indication that the
token population of the first token bucket has risen above
a second threshold value, or (d) an indication that a rate
of rejection of work requests at the first work target is
above a particular threshold value.

13. The method as recited in claim 6, wherein the first work
target comprises a first replica of a plurality of replicas of a
first logical partition of a storage object, wherein each replica
of'the plurality of replicas is assigned a role comprising one of
(a) a master role and (b) a slave role, wherein admission
control for a work request that includes a write operation
directed to the first logical partition is performed at the replica
to which the master role is assigned, wherein the first replica
is assigned a first role with respect to the first logical partition,
further comprising, performing by the one or more computing
devices:

selecting a particular replica of a second logical partition of

the storage object as the second work target, wherein the
particular replica is assigned the same role with respect
to the second logical partition as the role of the first
replica with respect to the first logical partition.

14. The method as recited in claim 6, wherein said initiat-
ing the token transfer in the particular direction between the
first bucket and the second bucket is based at least in part on
a determination that, within a particular time window, no
other token transfer between the first work target and the
second work target was implemented.

10

15

20

25

30

35

40

45

50

55

64

15. The method as recited in claim 6, wherein the particular
direction is from the token bucket with the greater token
population among the first and second buckets, to the token
bucket with the smaller token population among the first and
second buckets, wherein the method comprises performing,
by the one or more computing devices:

determining a number of tokens to be transferred as a

function of the difference between the greater and
smaller token populations.

16. A non-transitory computer-accessible storage medium
storing program instructions that when executed on one or
more processors:

determine a number of tokens to be transferred between a

first bucket in a first token bucket set and a second bucket
in a second token bucket set, wherein the first token
bucket set is used for admission control of work requests
directed at a first work target of a plurality of work
targets, and wherein the second token bucket set is used
for admission control at a second work target of the
plurality of work targets;

initiate a transfer of the number of tokens in a particular

direction between the first bucket and the second bucket;
and

accept, in response to receiving a work request directed to

the first work target, the work request for execution
based at least in part on the token population of the first
bucket subsequent to the transfer.

17. The non-transitory computer-accessible storage
medium as recited in claim 16, wherein the plurality of work
targets comprise a first collection of one or more storage
objects created at a network-accessible storage service on
behalf of a first client, and a second collection of one or more
storage objects created at the network-accessible storage ser-
vice on behalf of a second client, wherein the first work target
comprises at least a portion of a storage object of the first
collection, and wherein the instructions when executed at the
one or more processors:

select the second work target from the first collection.

18. The non-transitory computer-accessible storage
medium as recited in claim 16, wherein the first work target
comprises at least a portion of a base database table instanti-
ated on behalf of a particular client of a network-accessible
database service, and the second work target comprises at
least a portion of a derived database table instantiated at the
network-accessible database service to implement a second-
ary index on the base database table.

19. The non-transitory computer-accessible storage
medium as recited in claim 16, wherein the first token bucket
set comprises a normal-mode bucket used for admission con-
trol during a normal mode of operation of the first work target,
and one or more burst-mode token buckets used for admission
control during a burst mode of operation at the first work
target, wherein the one or more burst-mode token buckets
include the first bucket.

20. The non-transitory computer-accessible storage
medium as recited in claim 16, wherein the second work
target is selected from among the plurality of work targets
using a random selection policy in accordance with a gossip
protocol.



